
EE 510: Machine Learning Theory & Algorithms Spring 2022

Mini Project 1

Due: April 22, 2022, 11:59PM PT
Student Name: Mart́ın Rodriguez Instructor Name: John Lipor

1 Problem description

The Titanic dataset is billed as an ”intro” dataset hosted by the popular data science competition website,
Kaggle [1]. It contains data on the passengers on the famous Titanic steamliner, which sank on its maiden
voyage in 1912. It has a training set and a testing set; the training set is used to train the model and the
trained model is then used to make predictions about the testing set. Only the training set contains the
true labels, which in this case is a binary value: 1 if the passenger survived and 0 if the passenger died. The
objective is to create a linear model that can accurately predict whether a passenger lived or died using the
available data.

Ridge regression aims to optimize the cost function given a set of sample-label pairs (xi, yi) for m samples,
K classes, and d features:

Ŵ = arg min
W∈Rd×K

m∑
i=1

∥∥WTxi − yi
∥∥2
2

+ λ ‖W‖2F

where the normal equation solved for Ŵ is

Ŵ = (XTX + λI)−1XT y

2 Exploratory data analysis (EDA)

The dataset consists of two CSV (Comma-Separated Values) files which have already been separated into
”train” and ”test” subsets. The files contain categorical, numerical, and string-based data in addition to quite
a few NaNs (missing values). In total, train.csv contains 891 data points with 12 features and test.csv

contains 418 data points with 11 features. test.csv lacks the column for the ”Survived” classification, which
the model aims to predict). In order to validate the model, the data in train.csv was further separated into
a test set and validation set. Of the 12 test features, 3 contain NaNs in at least one of the 891 data points:
[’Age’], [’Cabin’], and [’Embarked’], which amounts to a total of 708 data points with at least one
missing feature. If all data points with NaNs are removed, this only leaves 183 points total for training and
validation. Because this causes the number of data points to be reduced so heavily, it could be worthwhile
to explore different methods of data imputation so that these data points can still be used to train and
validate the classifier. If the feature with the most missing values - [’Cabin’] is dropped altogether before
checking for NaNs, we can retain 712 samples at the cost of a reduced feature space. One approach is to
impute all missing data to ”guess” what the missing data might be. An alternative is to set a threshold and
only remove columns and rows with a higher percentage of missing values than the threshold, then perform
some form of data imputation on the remaining NaNs [2].

1

Mini Project 1 2

0

200

400

600

800
Pa

ss
en

ge
rI

d

1.0

1.5

2.0

2.5

3.0

Pc
la

ss

0

20

40

60

80

A
ge

0

2

4

6

8

Si
bS

p

0

1

2

3

4

5

6

Pa
rc

h

0 500 1000
PassengerId

0

100

200

300

400

500

Fa
re

1 2 3
Pclass

0 50
Age

0 5
SibSp

0.0 2.5 5.0
Parch

0 200 400 600
Fare

Survived
0
1

Figure 1: Pairplot showing pairwise relationships between features

UMAP (Uniform Manifold Approximation and Projection) reduction was attempted on scaled data, but
it didn’t help much since this dataset is not of an extremely high dimension [3].

Mini Project 1 3

20 10 0 10 20 30 40 50

10

0

10

20

30
UMAP projection of the titanic dataset

Survived
0
1

Survived
0
1

Figure 2: UMAP scatterplot showing reduced dimensionality

It isn’t clear, based on the UMAP reduction, whether or not a linear relationship can be derived from
the data given and there isn’t much separability between the reduced dimension data points.

3 Challenges

The main challenges faced with this dataset were concerning what to do about missing values and picking
out which features were relevant to the classification. I have a feeling that [’Cabin’] is a relevant feature,
but when using a missing value threshold of 0.7 it was dropped from the model. I struggled with this aspect
in the model design and this is definitely something to improve upon. Another design parameter which could
be tweaked are the bins to use for [’Age Group’] and [’Fare Group’], but I am not sure how to reason
through this step theoretically.

4 Approach

4.1 Main workflow

1. Load data

2. Preprocessing

3. Separate data into training and validation sets

4. Use training set to fit the Ridge Classifier model with K=2 (binary classifier)

5. Use the fitted model to make predictions on the validation set

Mini Project 1 4

6. Use the validated model to make predictions on the testing set

7. Evaluate the model’s performance

4.2 Preprocessing steps

1. Check to see if any columns contain missing values.

2. Set a threshold for an acceptable amount of missing values per column and row.

3. Remove columns (features) and rows (points) with more than the threshold of missing values.

4. Fill remaining missing values with zeros. Other imputation techniques are also possible.

5. Determine suitable bin sizes for continuous features such as [’Age’] and [’Fare’] and bin them
accordingly.

6. One-hot encode categorical features.

7. Standardize numerical features (if necessary).

4.3 Data encoding

Age was broken into six categories:

Age Age Group Count Percentage
(0, 2] Baby 5 2.73%
(2, 12] Child 6 3.28%
(12, 18] Adolescent 12 6.56%
(18, 30] Young Adult 46 25.14%
(30, 65] Adult 104 56.83%
(65, 99] Elderly 10 5.46%

Table 1: Bins for Age Group feature transformation

Fare amount was similarly broken into six categories:

Fare Fare Group Count Percentage
(0, 25] Cheapest 21 11.60%
(25, 50] Cheaper 48 26.52%
(50, 100] Cheap 71 39.23%
(100, 200] Pricy 25 13.81%
(200, 500] Pricier 14 7.73%
(500, 600] Priciest 2 1.10%

Table 2: Bins for Fare Group feature transformation

Then the data was split into training and validation sets in order to benchmark the model. The test
subset was set to be 1/3 of the total samples in train.csv.

There was a tradeoff between keeping all features and eliminating missing data. The data seems to
suggest that the model would benefit from mapping the data using a nonlinear function in order to create
separability between classes.

Mini Project 1 5

5 Evaluation and summary

In order to benchmark the model, it is assumed that it should have better performance than just predicting
survival based on [’Sex’] == Female. Table 1 and 2 show the error for the baseline model and the ridge
regression model when rows and columns with more than 70% NaNs are dropped, and remaining missing
values are filled with zeros.

Training error Validation error Kaggle error
21.81% 20.34% 23.44%

Table 3: Baseline training, validation, and Kaggle (test) error (females survive)

Training error Validation error Kaggle error
17.79% 18.31% 23.68%

Table 4: Training, validation, and Kaggle (test) error for ridge regression model

Predicted
Actual 0 1

0 152 23
1 31 89

Table 5: Confusion matrix for validation set

Metric Score
Accuracy 0.82
Precision 0.79

Recall 0.74

Table 6: Metrics for validation set

The ridge regression model performed slightly better on the training and validation sets but suffered on
the test set.

It can be observed from Table 3 that the model did slightly worse at predicting survival than it did at
predicting death, although this can be partially explained by the fact that the data is biased toward death (in
the train set, 549 out of 891 passengers died versus 342 that lived). Nonlinear models would likely perform
better, unless the features can be properly engineered. I was not able to achieve much better performance
than the gender-based model which assumes that all females survived. The ridge regression classifier might
benefit from added bias, which could be implemented fairly easily.

6 What I learned

A pairplot was used to visualize the possible relationships between pairwise features [3]. UMAP was also
used to try to visualize the data in a reduced dimension, but it didn’t produce any insightful results due to
the relatively low dimensionality of the data [3] Data imputation techniques are something to consider that
may marginally improve performance [2]. I think feature engineering is a huge part of this data set, and
likely for most datasets taken from the real world. I don’t have the metrics to back it up, but I observed
that a small increase in performance was achieved by transforming the continuous features such as [’Age’]
and [’Fare’] into discrete, categorical features [8]. This is something I didn’t anticipate, but made sense
when considering that discrete binned categories are much easier to analyze for patterns.

Mini Project 1 6

References

[1] (2018) Titanic: Machine Learning from Disaster. [Online]. Available:
https://www.kaggle.com/c/titanic/overview

[2] (2019) Fundamental Techniques of Feature Engineering for Machine Learning. [Online]. Available:
https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114#3abe

[3] (2018) Document embedding using UMAP. [Online]. Available: https://umap-
learn.readthedocs.io/en/latest/document embedding.html

[4] (2016) A comprehensive introduction to data wrangling. [Online]. Available:
https://www.springboard.com/blog/data-wrangling/

[5] (2019) Ml explainability: Deep dive into ml model! [Online]. Available:
https://www.kaggle.com/niyamatalmass/ml-explainability-deep-dive-into-the-ml-model

[6] (2021) Titanic Tutorial. [Online]. Available: https://www.kaggle.com/code/alexisbcook/titanic-
tutorial/notebook

[7] (2017) Data Wrangling with Python Tutorial. [Online]. Available:
https://github.com/Rogerh91/Springboard-Blog-Tutorials/blob/master/Data%20Wrangling%20with
%20Python%20Tutorial/Data%20Wrangling%20with%20Python%20Tutorial%20(Springboard).ipynb

[8] (2019) Pandas Cut - Continuous to Categorical. [Online]. Available:
https://www.absentdata.com/pandas/pandas-cut-continuous-to-categorical/

Mini Project 1 7

Code: mp01.py

#!/usr/bin/env python3

-*- coding: utf-8 -*-

"""

Created on Tue Apr 19 12:55:30 2022

@author: teen

"""

import numpy as np

import seaborn as sns

import pandas as pd

import matplotlib

import matplotlib.pyplot as plt

import bokeh

import umap

import os

from sklearn.linear_model import LogisticRegression, LinearRegression, Ridge, RidgeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn import metrics

def DrawArrayAxes(nRows, nColumns, iRow, iColumn,

axisBoundaries=[0.02,0.02,0.13,0.10],

horizontalBuffer=0.02,

verticalBuffer=0.09,

sharex=None,

figure=None):

if not figure:

figure = plt.gcf()

topArrayEdge = axisBoundaries[0]

rightArrayEdge = axisBoundaries[1]

bottomArrayEdge = axisBoundaries[2]

leftArrayEdge = axisBoundaries[3]

axesWidth = (1-leftArrayEdge-rightArrayEdge

-(nColumns-1)

*horizontalBuffer)/nColumns

axesHeight = (1-topArrayEdge-bottomArrayEdge-(nRows-1)*verticalBuffer)/nRows

leftEdge = leftArrayEdge +(iColumn -1)*(axesWidth+horizontalBuffer)

bottomEdge = bottomArrayEdge+(nRows-iRow)*(axesHeight+verticalBuffer)

axes = figure.add_axes([leftEdge,

bottomEdge,

axesWidth,

axesHeight], sharex=sharex)

axes.spines['top'].set_visible(False)

axes.spines['right'].set_visible(False)

axes.yaxis.set_ticks_position('left')

axes.xaxis.set_ticks_position('bottom')

Mini Project 1 8

return (axes)

def FormatFigureText(figure=None, fontSize=None, fontName=None):

if not figure:

figure = plt.gcf()

textHandles = [h for h in figure.findobj() if type(h) == matplotlib.text.Text]

for th in textHandles:

if fontName:

th.set_fontname(fontName)

if fontSize:

th.set_fontsize(fontSize)

def encode_one_hot(y):

'''

Parameters

y : vector of integers

categorically integer-encoded vector to encode into one-hot encoding.

Returns

n_classes : integer

number of classes for one-hot encoding.

y_encoded : y x n_classes sized-array

one-hot encoding of y.

'''

n_classes = len(np.unique(y))

y_encoded = np.eye(n_classes)[y]

return n_classes, y_encoded

def ridge_classification(X, y, reg_param, train=False, W=None):

'''

Parameters

X : array

data with which to train or test classifier.

y : array

labels with which to train or test classifier.

reg_param : float

regularization parameter, sometimes called lambda or alpha.

train : bool

whether classifier should train or test

W : array

estimate for W, None if classifier is training. Must be supplied if testing

Returns

W :

Mini Project 1 9

array of estimate for W

y_pred : array

array of labels returned by classifier.

'''

if train:

n_features = np.size(X, 0)

W = np.linalg.inv(X @ X.T + reg_param * np.eye(n_features)) @ X @ y

ys = X.T @ W

y_pred = np.argmax(ys, 1)

return W, y_pred

def classification_error(y, y_pred):

'''

Parameters

y : array of ints

true labels.

y_pred : array of ints

labels returned by classifier.

Returns

error : float

classifier error.

'''

n_samples = np.size(y)

errors = y_pred-y

n_errors = np.count_nonzero(errors)

error = 1 - (n_samples - n_errors) / n_samples

return error

sns.set(style='white', context='notebook', rc={'figure.figsize':(14,10)})

#%% Load data

cwd = '/Users/teen/School/EE 510/hw/mp01/'

data_path = 'data/titanic/'

figure_path = "out/"

train_all_df = pd.read_csv(cwd + data_path + "train.csv")

test_all_df = pd.read_csv(cwd + data_path + "test.csv")

#%% Preprocessing

Determine if NaNs exist in training dataset

pd.isnull(train_all_df).any()

threshold = 0.7

#Dropping columns with missing value rate higher than threshold

Mini Project 1 10

train_df = train_all_df[train_all_df.columns[train_all_df.isnull().mean() < threshold]]

test_df = test_all_df[test_all_df.columns[test_all_df.isnull().mean() < threshold]]

#Dropping rows with missing value rate higher than threshold

train_df = train_df.loc[train_df.isnull().mean(axis=1) < threshold]

test_df = test_df.loc[test_df.isnull().mean(axis=1) < threshold]

pairplot = sns.pairplot(train_df, hue="Survived")

FormatFigureText(fontSize=11, fontName='Times New Roman')

saveName = cwd + figure_path + "pairplot.pdf"

plt.savefig(saveName, bbox_inches="tight")

Only use the cabin letter

cabin_list = ['A', 'B', 'C', 'D', 'E', 'F', 'G']

for i, cabin_letter in enumerate(cabin_list):

mask = train_df['Cabin'].str.startswith(cabin_letter)

train_df.loc[mask, 'Cabin'] = cabin_letter

Features to select, get dummies

features = ['Pclass','Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']

X = train_df[features]

X_test = test_df[features]

X = X.fillna(0)

X_test = X_test.fillna(0)

Encoding age

0 : baby 0-2 yrs

1 : child 2-12 yrs

2 : adolescent 12-18

3 : adult 18-65

4 : elderly 65-

category = pd.cut(X.Age, bins=[0,2,12,18,30,60,99], labels=['Baby',

'Child',

'Adolescent',

'Young Adult',

'Adult',

'Elderly'])

X.insert(3, 'Age Group', category)

X = X.drop(columns='Age')

category = pd.cut(X.Fare, bins=[0,25,50,100,200,500,600],labels=['Cheapest',

'Cheaper',

'Cheap',

'Pricy',

'Pricier',

'Priciest'])

Mini Project 1 11

X.insert(7, 'Fare Group', category)

X = X.drop(columns='Fare')

categorical_columns = ['Sex','Pclass','Age Group', 'Fare Group', 'Embarked']

for column in categorical_columns:

encoded_columns = pd.get_dummies(X[column], prefix=column)

X = pd.merge(

left=X,

right=encoded_columns,

left_index=True,

right_index=True,

)

X = X.drop(columns=column)

category = pd.cut(X_test.Age, bins=[0,2,12,18,30,60,99], labels=['Baby',

'Child',

'Adolescent',

'Young Adult',

'Adult',

'Elderly'])

X_test.insert(3, 'Age Group', category)

X_test = X_test.drop(columns='Age')

category = pd.cut(X_test.Fare, bins=[0,25,50,100,200,500,600],labels=['Cheapest',

'Cheaper',

'Cheap',

'Pricy',

'Pricier',

'Priciest'])

X_test.insert(7, 'Fare Group', category)

X_test = X_test.drop(columns='Fare')

categorical_columns = ['Sex','Pclass','Age Group', 'Fare Group', 'Embarked']

for column in categorical_columns:

encoded_columns = pd.get_dummies(X_test[column], prefix=column)

X_test = pd.merge(

left=X_test,

right=encoded_columns,

left_index=True,

right_index=True,

)

X_test = X_test.drop(columns=column)

X = X.drop(columns='Embarked_0')

tempdf = pd.get_dummies(X[column], prefix=column)

y = train_df["Survived"]

Mini Project 1 12

%% Split train data into train and validation sets

X_train, X_validation, y_train, y_validation = train_test_split(X,

y,

test_size=0.33,

random_state=42)

X_data = X.values

X_validation_data = X_validation.values

scaled_X_data = StandardScaler().fit_transform(X_data)

reducer = umap.UMAP(random_state=42)

reducer.fit(scaled_X_data)

embedding = reducer.embedding_

embedding.shape

fig = plt.figure()

fig.set_size_inches(6.5, 4.5)

fig.clf()

ax = DrawArrayAxes(1, 1, 1, 1)

umap_scatter = ax.scatter(

embedding[:, 0],

embedding[:, 1],

c=y,

cmap=matplotlib.colors.ListedColormap(['red', 'black']))

plt.gca().set_aspect('equal', 'datalim')

plt.title('UMAP projection of the titanic dataset', fontsize=24)

legend = ax.legend(*umap_scatter.legend_elements(),

loc="upper left", title="Survived")

ax.add_artist(legend)

FormatFigureText(fontSize=11, fontName='Times New Roman')

saveName = cwd + figure_path + "UMAP_scatter.pdf"

plt.savefig(saveName, bbox_inches="tight")

%% Create baseline by using Sex to predict survival, 1 if Sex_Female = True

base_train_error = classification_error(y_train, X_train.Sex_female)

base_test_error = classification_error(y_validation, X_validation.Sex_female)

print("\nBaseline training error (females survive): %2.2f%%" % (100.0 * base_train_error))

print("Baseline validation error (females survive): %2.2f%%" % (100.0 * base_test_error))

%% Fit the model with Linear Regression

Mini Project 1 13

model = LinearRegression()

model.fit(X_train, y_train)

predictions = model.predict(X)

train_score = model.score(X_train, y_train)

test_score = model.score(X_validation, y_validation)

train_error = 1-train_score

test_error = 1-test_score

%% Fit the model with Logistic Regression

model = LogisticRegression(max_iter=1000)

model.fit(X_train, y_train)

predictions = model.predict(X)

train_score = model.score(X_train, y_train)

test_score = model.score(X_validation, y_validation)

train_error = 1-train_score

test_error = 1-test_score

%% Fit the model with Ridge Regression

model = RidgeClassifier(alpha=1e-4,tol=1e-2,max_iter=1000,fit_intercept=True)

model.fit(X_train, y_train)

y_predicted = model.predict(X_validation)

y_actual = pd.Series(y_validation, name='Actual')

y_predicted = pd.Series(y_predicted, name='Predicted')

c_matrix = metrics.confusion_matrix(y_actual, y_predicted)

print("Confusion matrix\n")

print(c_matrix)

print("Accuracy score: %f" % metrics.accuracy_score(y_actual, y_predicted))

print("Precision score: %f" % metrics.precision_score(y_actual, y_predicted))

print("Recall score: %f" % metrics.recall_score(y_actual, y_predicted))

train_score = model.score(X_train, y_train)

test_score = model.score(X_validation, y_validation)

train_error = 1-train_score

test_error = 1-test_score

print("\nRidge regression training error: %2.2f%%" % (100.0 * train_error))

Mini Project 1 14

print("Ridge regression validation error: %2.2f%%" % (100.0 * test_error))

output = pd.DataFrame({'PassengerId': test_df.PassengerId, 'Survived': predictions})

output.to_csv(cwd + 'out/' + 'submission.csv', index=False)

print("Your submission was successfully saved!")

	Problem description
	Exploratory data analysis (EDA)
	Challenges
	Approach
	Main workflow
	Preprocessing steps
	Data encoding

	Evaluation and summary
	What I learned

