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Abstract

As we face the current climate crisis, the discovery of geothermal energy resources has

the potential to greatly reduce our dependence on fossil fuels worldwide. However, the

development of any new energy infrastructure is expensive and depends on the willingness of

energy agencies and developers to make initial investments based on calculated risk measures.

One such measure, called geothermal favorability, is the likelihood that a site has conditions

favorable for geothermal systems containing recoverable energy potential. Its prediction from

existing geophysical datasets proves to be a nontrivial task. The prediction of geothermal

favorability can be framed as a binary classification problem, the data for which consists

entirely of samples which are either positive (location contains a conventional hydrothermal

system) or unlabeled (location does not contain any known geothermal system but should not

be considered strictly negative). Data that comprises only positive and unlabeled examples

is called positive unlabeled data, or PU data. PU learning is the branch of semi-supervised

learning concerned with learning effectively from PU data. In addition to containing no

negative examples, the dataset this thesis uses is heavily imbalanced, with many unlabeled

examples and very few positive examples.

Previously, resource assessments have required experts to be directly involved in the

assessment process, which can be time-consuming, expensive, and incurs human bias. Recent

work in geothermal favorabililty prediction has used undersampling to mitigate class imbalance

when training linear and nonlinear machine learning models, but more sophisticated techniques

exist in the larger body of literature to specifically target the deficiencies in PU data.

Furthermore, the metrics most common to the classification literature, e.g., the F1 score and

area under the receiver operating characteristic curve (ROC-AUC), do not adequately reflect

the performance of models trained on PU data with such severe class imbalance. This thesis

introduces the Kullback-Leibler divergence (DKL) as a means of model evaluation for PU data

and explores two PU learning techniques: Selected-at-Random Expectation-Maximization
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(SAR-EM) and Difference-of-Estimated-Densities-based PU Learning (DEDPUL), on U.S.

Geological Survey (USGS) data from 2008. It then compares these two most current

PU learning techniques against previous naïve methods using logistic regression (LR) and

XGBoost. We demonstrate that, when used as a scoring function to tune hyperparameters

for linear and nonlinear machine learning models, the DKL has an intrinsic ability to separate

the unlabeled from predicted positive distributions. It has the weakness of being a highly

variable scoring function, however: the strategy with the highest DKL score has a standard

deviation that is 38% larger than its mean.

In the PU learning context, a nontraditional classifier (NTC) is a classifier that is trained

on PU data to separate positive from unlabeled examples as if it were performing traditional

binary classification. NTCs are often an integral part of PU learning algorithms, where they

function to reduce data dimensionality, provide a lower bound for class prior prediction, and

act as a baseline for determining PU learning algorithm performance. We show that when

LR is used to train an NTC, SAR-EM achieves a more accurate estimate of the class prior

over other methods, with a mean absolute error (MAE) 185% lower than the closest naïve

approach. SAR-EM also produces a slight improvement of 18% in F1 score compared to all

other methods. The favorability maps resulting from SAR-EM resemble those given by naïve

LR methods in that the transition between regions of favorability is much more gradual and

the lower favorability regions much smaller than the other methods explored. When XGBoost

is used to train an NTC, DEDPUL enhances the model’s bias toward heavily penalizing

likely negative samples/regions with steep boundaries between favorability regions. When

comparing ridge plots, naïve XGBoost is better at separating the unlabeled distribution

from predicted positive results, even over more advanced PU methods. It remains that these

simpler models such as LR and XGBoost, which rely on undersampling and the appropriate

tuning of class weights, and treat all unlabeled examples as negative, can provide performance

that is on par with the current state-of-the-art in PU learning.
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1 Introduction

1.1 Motivation

Geothermal energy is a renewable resource that has proven to be an asset in helping our society

move further away from a dependence on fossil fuels [12–16]. Although the energy produced

from geothermal systems worldwide saves just under half a billion barrels of oil annually, it only

accounts for about one percent of energy generated from all renewable sources, which in turn

accounts for less than 10 percent of the total global energy supply [17–19]. A 2008 geothermal

resource assessment [20] conducted by the U.S. Geological Survey (USGS) estimated that

within the U.S. there is the mean potential for a three-fold increase in power generation

if currently identified and undiscovered conventional geothermal systems are incorporated

into the national energy portfolio. This indicates a large margin for further geothermal

energy production predicated on the discovery of previously undiscovered geothermal energy

sites, which can both reduce our dependence on fossil fuels and help to balance fluctuating

renewables like wind and solar.

The earliest U.S. geothermal survey assessments, starting in 1965 and continuing through

1973, varied widely in their concluding estimates. Subsequent expert-driven national assess-

ments [21,22] completed from 1975–1978 were aimed at reconciling the variability in these

estimates and better quantifying the national geothermal potential. They also succeeded

in establishing concrete guidelines and definitions related to the potential extraction of

geothermal resources.

Adapting machine learning methods to this problem of geothermal favorability was the
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aim of two assessments [9,23] conducted by the USGS on potential moderate- (90◦C to 150◦C)

to high-temperature (> 150◦C) geothermal energy sources in the western U.S. Although they

were successful in applying logistic regression (LR) and weight-of-evidence (WoE) models

to existing data to achieve results comparable with previous methods, they relied on expert

analysis for several key aspects of the model building process such as binning and thresholding

of features, which remains time-consuming and incurs human bias. A more data-driven

approach was taken recently by Mordensky et al. [5, 6], who, through applying LR, eXtreme

Gradient Boosting (XGBoost) [24], Support Vector Machines (SVMs) [25], and multilayer

perceptron artificial neural networks (ANNs) in single-classifier and ensemble approaches (for

all except the ANN) to the five most successful features from [9, 23], were able to achieve

comparable results to these expert-driven assessments.

The labeled data these most recent assessments [5, 6] used suffers from severe class

imbalance of one positive for every 2600 nonpositive examples, and the subset of data with

an observed target variable consists solely of positive examples. The nonpositive examples

must be considered unlabeled; treating them as explicitly negative rather than unlabeled

would possibly result in a classifier with poor performance, since its training dataset could

contain undiscovered positive examples which are incorrectly labeled as negative. Similarly

problematic or noisy data is the norm among geothermal datasets collected worldwide, which

are often reported differently by different organizations, may originate from inconsistent

methods of data collection, contain many outliers, or be missing some data from one or

more classes [18]. Data that consists of a positive set and unlabeled mixture set composed

of unidentified positive and negative examples is called positive unlabeled (PU) data. PU

learning, or learning from PU data, is a branch of the semi-supervised learning problem,

since rather than having access to some labels from each domain as in the generic semi-

supervised scenario, only a subset of the positive examples are observed [26,27]. Generally,

semi-supervised machine learning models are improved when unlabeled data is included in
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training rather than removing it altogether [28].

The two main problems central to PU learning are, firstly, how to train PU learning models

and, secondly, how to evaluate trained PU learning models. Techniques may be borrowed

from other domains where PU data naturally emerge, like natural language processing and

knowledge base building, to assist in mitigating the issue of missing data and to build more

robust models [29]. Where common cardinality-based metrics such as the F1 score fall short of

estimating true PU classifier performance [8], the Kullback-Leibler divergence (DKL) [30] is a

possible alternative measure of model robustness. The DKL measures the difference between

two continuous or discrete distributions and has previously been used successfully in problems

like anomaly detection [31,32] and class prior estimation in unlabeled test data [33]. Here we

apply the DKL in the process of hyperparameter optimization, where the hyperparameters

that are selected for training are those which maximize the DKL between the unlabeled data

and the model’s predicted positive data after normal score transformation. By using the DKL

in this manner, hyperparameters which tend to push these two distributions farther apart

are favored.

As datasets grow, both in terms of number of geophysical features and in sample size,

the need for data-driven methods increases. The question arises of whether it is possible to

create a solely data-driven model from PU data that can correctly determine the viability

of potential geothermal energy sources with equal or better performance to methods which

rely on human decisions, thus saving time on future surveys and improving the likelihood

of success. Further, can recent advances in PU learning be incorporated to add to the

effectiveness of these data-driven models?

This thesis examines the Kullback-Leibler divergence as a method of model evaluation for

positive unlabeled data and studies the application of current techniques in positive unlabeled

learning to the estimation of geothermal favorability in the western United States.
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1.2 Background and Related Work

1.2.1 Geothermal Favorability Assessment

The first national geothermal resource assessment conducted in [21] defined geothermal

resources as “stored heat, both identified and undiscovered, that is recoverable using current

or near-current technology, regardless of cost.” White et al. [21] found that many of the

currently identified systems were likely to result in new geothermal discovery, for the reason

that the volume or temperature contained within the systems may be higher than previous

measurements and estimates indicated. The systems they examined were also grouped in

terms of the type of recoverable geothermal resource; only two of the four categories they

identify occur with any frequency in the region of interest for this thesis (western U.S.).

These are:

• Regional conduction-dominated areas, and

• High-temperature (> 150◦C) and moderate-temperature (90◦C to 150◦C) hydrothermal

convection systems [21].

White et al. estimated that within the discovered high-temperature hydrothermal convec-

tion systems, there exists the potential for a five-fold increase in the geothermal resources

waiting for future discovery [21]. Within the intermediate-temperature systems, they esti-

mated the potential presence of more than three times the recognized geothermal resources

resulting from hydrothermal convection systems [21].

A subsequent circular [22] expanded on this first assessment, including in their discussion

regions with low-temperature (< 90◦C) hydrothermal convection systems and updating

the results based on moderate- to high-temperature hydrothermal convection systems by

incorporating statistical methods, which, depending on the system, resulted in a significant
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increase or decrease of estimated thermal reservoir areas or temperatures. Overall, [22]

reported 24 percent fewer hydrothermal convection systems than those reported by [21].

The most recent moderate- to high-temperature geothermal resource assessments [9, 23]

conducted in 2008 by the USGS used WoE and LR to create 28 models with the goal of

predicting regions which are likely to have high geothermal favorability by mapping the ratio

of posterior to prior probability over a varying combination of feature sets within the data.

In general, geothermal favorability is a measure of likelihood that, within a region, favorable

conditions for geothermal systems exist [5]. Although these linear models (WoE and LR)

help to mitigate the bias inherent in expert-based decision making, they maintain a heavy

reliance on expert opinion in several key aspects of the model-building process like feature

selection and preprocessing, binning, and thresholding [5].

The dataset used in [9] is the result of gridding the western U.S. into cells, 2 km-by-2 km,

and assigning each cell a positive label if it contains a known conventional hydrothermal system.

Out of 725,442 total cells, only 278 belong to the positive class (contain a known conventional

hydrothermal system). This dataset, then, suffers from severe class imbalance at a ratio of

about 1:2600 positive:unlabeled data points. Many machine learning algorithms perform best

when classes are balanced, and often when a dataset has moderate class imbalance (from 1:>1

to 1:<100), strategies like oversampling, undersampling, or sample weighting are employed to

mitigate the imbalance [34–36]. Unfortunately when class imbalance is severe (1:<100), if

one simply predicts the majority class for all examples, one can achieve a highly accurate

model even though this model provides no information about the minority distribution of

interest. Another strategy, then, might be the use of different evaluation metrics or learning

algorithms better suited to datasets with class imbalance or missing data. Williams and

DeAngelo [9] assumed that all non-positive data points were negative; better performance

might be achieved by, for example, assigning some importance to finding data points which

were unlabeled but true positives.
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(a) (b)

Figure 1.1: Favorability maps for logistic regression using (a) 12 models from 2008 assessment [9] created
using different feature sets, averaged [6] and (b) five features used in [5] and [6]. Dots show the locations of
known geothermal sites.

Recent work in [5] applied LR, XGBoost, and SVM models in both single-classifier and

ensemble approaches to a subset of the data used in the assessment in [9]. A subsequent study

in [6] also compared these methods to a multilayer perceptron ANN. The five raw features

used in these most recent studies were: estimated conductive heat flow in milliwatts per square

meter (mW/m2), distance to nearest Quaternary fault in meters, distance to nearest magma

body in meters, seismic event density for all events greater than magnitude (M) 3 within a

4 km radius in number of M3 events per square kilometer (km2), and maximum horizontal

stress in megapascals (mPa). These features are abbreviated “heat flow,” “fault distance,”

“magma distance,” “seismic density,” and “stress,” respectively. Mordensky et al. [5, 6] found

that on average, the best performance (using the average F1 score) was achieved using the

single-classifier LR model, even over the more complex nonlinear and ensemble approaches.

Yet, the nonlinear models (SVMs, XGBoost, and ANNs) produced results which were in

better agreement with [9], indicating a need for a more revealing method of model evaluation
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(a) (b)

Figure 1.2: Favorability maps created by [6] using (a) logistic regression and (b) XGBoost. Dots show the
locations of known geothermal sites.

and the possibility that the expert decisions were in fact adding some degree of nonlinearity

to the linear models from the previous assessments [5].

Figures 1.1 and 1.2 show the favorability maps created by [5] to compare the expert

decision-based results in [9] with those created by more data-driven models (the single

LR and XGBoost strategies). The four maps are generally in agreement in areas of high

favorability but differ most in areas of lower favorability. Notably, the data-driven models in

Figure 1.2 show a smoother transition from high- to low-favorability regions than the expert

decision-based models in Figure 1.1, which have steeper transitions and more concentrated

regions of low favorability. This indicates that, in effect, adding expert decisions to the model

building process (through data selection, thresholding, and binning) added nonlinearities to

these linear models [6].

Although it is desirable to incorporate domain knowledge into the model building process,

one must be wary of the side effect of incurring human bias through thresholding or binning
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of a problem which is potentially unnecessary. To this end, [23] identified three potential

characteristics of undiscovered geothermal systems:

• They might include flow from thermal springs,

• They may have no surface/near-surface discharge but significant thermal anomalies,

and

• They may be deep systems with modest or undetectable thermal anomalies.

Furthermore, a process similar to that observed in petroleum resource assessments may

be influencing the separation between discovered and undiscovered geothermal systems.

Petroleum reserves often consist of larger, more easily discoverable systems whereas the

smaller, less historically discoverable systems outnumber them [23]. This suggests the

potential to model a certain propensity function which determines by what mechanism

examples are chosen to be labeled [37]. “Chosen to be labeled” implies the example is

also from the positive class. Accurately estimating the propensity score, either by domain

knowledge or through learning, has the potential to improve the performance of existing

resource assessment models.

Mordensky et al. [5, 6] used random undersampling of the validation and test set to

simulate the estimated natural distribution of the target variable. This natural distribution

estimate was created by taking an estimate of the mean undiscovered power potential from [9],

estimating the mean power generation from identified systems, and using Equations 1.1

through 1.3 to arrive at an estimate of the total number of geothermal systems, both

discovered and undiscovered [6].

Avg. System Power Generation =
Power Generation of Identified Systems

# of Identified Systems
(1.1)
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# of Undiscovered Systems =
Total Undiscovered Power Potential

Avg. System Power Generation
(1.2)

Total # of Geothermal Systems = Identified Systems + Undiscovered Systems (1.3)

Using the mean power production estimates from [9], [6] arrived at an estimated natural class

ratio of around 1:700 positive:negative data points. The validation and test sets were then

undersampled to obtain this balance and allow for better estimation of classifier performance.

Despite undersampling, the 2008 USGS dataset contains very few positive examples, which

far surpasses the threshold for what is considered an extremely imbalanced dataset and makes

learning difficult. Both [5] and [6] report mean F1 scores of less than 0.10 for all classifiers.

Although undersampling can help mitigate modest class imbalance, it is likely that better

estimator performance might be achieved through other means. Mordensky et al. [6] arrived

at several key insights to inform future models, which are summarized here:

• Metrics other than the F1 score may be better suited to the evaluation of models created

from PU data, particularly when the data suffers from severe class imbalance.

• Better models might incorporate techniques that specifically address the positive-

unlabeled nature of the data.

• It may be the case that geothermal systems are better explained as a multiclass

classification problem, that is, positive examples should be separated into classes based

on their specific properties, e.g., separating “large” and “small” geothermal systems, or

systems which are recoverable with current technology and those which may one day

be recoverable, into distinct classes.

• The data from the 2008 USGS assessment is inherently limited in its utility and an
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effort should be made to explore better methods of data collection, standardization,

and feature engineering in order to gain more information relevant to building a

representative geophysical model.

This thesis examines the first and seconds points above.

Poor classifier performance using traditional metrics, and agreement between models

incorporating expert-led decisions in [9] and those using data-driven methods in [5], indicate

that improvement over these initial findings is possible.

Out of a necessity for dealing with weakly supervised datasets that are similar to the 2008

USGS dataset, in domains such as text classification, knowledge base construction, and gene

identification, a subset of semi-supervised machine learning algorithms have emerged under

the name PU learning [27,29,38,39]. The diversity in PU learning approaches is immense, so

this thesis considers only a few of these approaches for application to geothermal favorability

prediction on the subset of the 2008 USGS dataset used in [5, 6]. A motivation for the PU

learning approach for binary classification follows.

1.2.2 Binary Classification

A binary classifier is a one-to-one function which maps a real-valued matrix Xm×n consisting

of m sample vectors {x1, . . . ,xm}, each with n features, to a target vector ym×1 consisting of

binary target variables {y1, . . . , ym}. Formally, given a feature vector x ∈ Rn, the classifier

f : Rn → [0, 1] outputs the class label y ∈ {0, 1} where y = 1 is a positive outcome and y = 0

is a negative outcome. A classifier is a probabilistic classifier if it outputs the probability

that an example belongs to each class, where the probability of all classes sums to one [27].

For classifier strategies that output a probability or probability-like score and do not

directly output a binary target variable, a threshold (generally 0.5) is chosen to select between

a positive and negative result. Other threshold values may result in better performance but

this must be tuned per-algorithm and per-dataset.
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The classifier output can be related to Bayes’ theorem, given in Equation 1.4

Pr(y = 1|x) =
Pr(x|y = 1) Pr(y = 1)

Pr(x)
. (1.4)

Assuming that the classifier gives a probabilistic output, which is true for LR, XGBoost,

and others (excluding SVMs), the output of f(x) can be viewed as the posterior probability

Pr(y = 1|x). For algorithms that do not output a probability-like score, their outputs can be

easily transformed into such via, for instance, Platt scaling or isotonic regression [27].

Given the likelihood Pr(x|y = 1), the prior probability (class prior) Pr(y = 1), and the

marginal probability Pr(x), it is possible to exactly recover the posterior. In practice, however,

the likelihood and class prior must be estimated from the data. The marginal probability is

usually ignored since the existence of the data itself does not depend on y and it only affects

the end result by a constant value [27].

A training example in a traditional supervised binary classification problem is represented

by the tuple (x, y), where x is a n-length feature vector, y is the target variable, and it is

assumed that every training example is correctly labeled. A classifier is then trained on each

training example such that given a new, unseen example x̂, it can produce the prediction

ŷ : f(x̂) = ŷ. This forms the principle of inductive inference, which attempts to learn a

general rule that can be applied to new data. In contrast, transductive inference attempts

to learn a rule for a specific dataset by training and testing on the same data. This means

that models trained by transductive learning cannot be as easily generalized. Inductive and

transductive inference are discussed further in Section 2.2.

Another assumption made in traditional binary classification concerns the origin of the

training set. It is assumed that the training set X composed of samples {x1, . . . ,xm} is an
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i.i.d. (independent and identically distributed) sample of the total population fX(x)

X ∼ fx(x)

∼ αfxp(x) + (1− α)fxn(x),

(1.5)

where α = Pr(y = 1) is the class prior and fxp(x) and fxp(x) are the probability density

functions (PDFs) of the positive and negative examples respectively. Written another way,

the distribution Pr(x) of a single example x is

Pr(x) = αPr(x|y = 1) + (1− α) Pr(x|y = 0). (1.6)

So far the fully-supervised scenario has been assumed. However, data originating from

many domains might contain label noise, partially labeled data (weakly-supervised learning),

be missing data from one or more classes, or in the extreme, be completely unlabeled

(unsupervised learning) [29]. These scenarios arise quite often in real-world datasets and

when all the possibilities of label noise are considered, perfect, fully labeled data is a rare

phenomenon [40]. It is therefore worthwhile to explore methods of using data in the PU

setting to train new models and evaluate the performance of existing models in order to

better generalize these models to real-world scenarios.

1.2.3 Positive Unlabeled Classification

A traditional probabilistic binary classifier is a classifier that has been trained on a set of

positive and negative examples selected randomly from the overall distribution Pr(x, y), to

learn a function f(x) that approximates the posterior probability of an example x belonging

to the positive class, Pr(y = 1|x) [38]. When training data contains only labels from the

positive class, this is a special case of weakly-supervised learning known as PU learning. PU

learning is closely related to other efforts to study learning in less-than-ideal conditions, such
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as learning with noisy labels [40,41]. In areas of machine learning research such as medical

diagnoses, knowledge completion, spam filtering, social media sentiments, recommendation

algorithms, and many others, negative examples are either sparse or do not occur naturally, so

it is worth studying how to learn effectively from PU data [29]. Unfortunately, it is impossible

to train a traditional classifier directly from PU data without making assumptions about the

origins of the data [27,29].

To formalize the PU learning scenario, a new random variable s ∈ {0, 1}, called the label

indicator, was defined in [38]. If an example is selected to be labeled, this is indicated by

s = 1. When y is unknown and the example could be of the positive or the negative class,

it is indicated by s = 0. This PU conditional probability relationship is summarized by

Equations 1.7 and 1.8

Pr(y = 1|x, s = 1) = 1, (1.7)

and

Pr(s = 1|x, y = 0) = 0. (1.8)

An example, drawn from the distribution Pr(x, y, s), becomes (x, y, s). The propensity

score e(x) = Pr(s = 1|y = 1, x) accounts for the probability of each positive example from

fxp(x) to be selected for labeling by some probabilistic labeling mechanism. Without making

any further assumptions about such a labeling mechanism, we can say that the PDF of the

distribution of labeled examples fxl(x) is a biased form of the PDF of the distribution of

positive examples fxp(x), the proof for which is given in [29]

fxl(x) =
e(x)

c
fxp(x), (1.9)

where c = Ex[e(x)] = Pr(s = 1|y = 1) is the fraction of positive examples selected to be

labeled, the label frequency.
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Figure 1.3: Venn diagram showing the set formulation for the PU learning problem with class imbalance.
One only has access to the subset of labeled positive examples and the subset of unlabeled examples. The
goal is to uncover the hidden boundary such that all true positive examples can be reliably separated from
the negative examples.

In the context of PU learning, it is necessary to distinguish between a traditional binary

classifier, which has been trained on a traditional positive-negative training set and whose

goal is to separate positive from negative examples, and a nontraditional classifier (NTC),

which has been trained on a PU dataset to separate positive from unlabeled examples. The

NTC only has access to s; y is unobserved [38].

The unavailability of labeled examples from both positive and negative distributions in

PU learning require that some new assumptions be made about the origin of the data in

order to train a successful classifier [29]. The next section explores those assumptions.

1.2.4 Assumptions to Enable PU Learning

Generally, the literature differentiates between assumptions made concerning the collection

of the data, those made concerning the labeling mechanism, and general assumptions made

about the data in order to facilitate PU learning [27, 29, 39]. These are outlined in the

following three subsections.

14



1.2.4.1 Data Collection Assumptions

Prior work has identified two possible scenarios for the origin of the PU data collected:

the single-training-set scenario and the case-control scenario [29, 38].

Single-training-set scenario Also sometimes called the censoring scenario [42], in the

single-training-set scenario all training data are drawn randomly from the overall distribution

Pr(X,y, s), but only (X, s) are saved for training; y is effectively discarded [38]. An easy-to-

remember example of this is provided by [29]: data from surveys on topics that are often

underreported, like smoking, can lead to the single-training set scenario. Social pressures

might cause some people to report themselves as nonsmokers when the opposite is true, in

effect censoring their own data. The single-training-set scenario is summarized by

X ∼ fx(x)

∼ αfxp(x) + (1− α)fxn

∼ αe(x)fxl(x) + (1− αe(x))fxu(x).

(1.10)

Case-control scenario The case-control scenario assumes the training data is derived from

two independent datasets, drawn independently from Pr(X,y, s). For the first dataset in the

case-control scenario, only the examples with s = 1 are saved. This is the positive set and

consists of “cases” or “presences” (leftmost set excluding the intersection in Figure 1.3) [38].

The second set in the case control scenario is the unlabeled set, also called the background

sample, contaminated controls, or pseudo-absences, for which s = 0 (rightmost set including

the intersection in Figure 1.3) [38]. The case control scenario can result from data being

collected in different methods or from different populations [29]. A simple example of this

scenario could arise if one were interested in classifying whether an audio clip contains a specific

invasive bird call. Suppose one also has access to one dataset containing positive examples
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Figure 1.4: Illustration highlighting the difference between the single-training-set and case-control scenarios.
In the single-training-set scenario, the training data is an i.i.d. sample from the overall distribution and
the true y is unknown to the learner. In the case-control scenario two independent datasets are used for
training: one containing only positives called the cases, and another being an i.i.d. sample from the overall
distribution called the background sample. The positive samples in both scenarios are selected according to
their propensity scores, a compact way to represent some probabilistic labeling mechanism.

collected from the bird’s native habitat, and another dataset with unlabeled recordings taken

in random locations. In the case-control scenario, the unlabeled dataset is described by

X|s = 0 ∼ fu(x)

∼ fx(x)

∼ αfxp(x) + (1− α)fxn(x).

(1.11)

If one can control any duplicate data between the distributions and there is no covariate shift

between the two sets of data, the case-control scenario can be reduced to the single-training

set scenario [27]. In this thesis, because we are working with one dataset drawn i.i.d. from

the overall distribution, we will assume the single-training-set scenario; we do not have two

sets of data drawn from different populations or using distinct methods. An added bonus

is that the single-training-set scenario is easier to work with and is the scenario most often

assumed in the literature
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1.2.4.2 Data Labeling Assumptions

Three assumptions have been proposed for the nature of the labeling mechanism: the Selected

Completely At Random (SCAR) assumption, the Selected At Random (SAR) assumption,

and Probabilistic Gap, also related to the Invariance of Order assumption [27, 29]. Elkan

and Noto [38] showed that most PU strategies involve the SCAR assumption, which assumes

that the labeled positive examples are selected uniformly at random from all positive data

points. This simplifies the problem of learning from PU data to estimating one scalar value

to account for the label frequency or class prior, which is equal for all positive data points,

and then training a model to learn the labeling mechanism [1].

Selected Completely At Random Under the SCAR assumption, every positive example

has exactly the same probability to be selected for labeling regardless of its attributes. It

is often used in the literature because it is the simplest to work with and it works well for

many datasets [1, 29,38]. Because the labeling mechanism is necessarily biased in some way

(it depends somewhat on the data itself or some external factors), a weaker assumption will

be necessary to generalize PU techniques to a broader array of datasets [1, 27].

Selected At Random Instead of assuming a constant probability for selection among all

positive examples, [1] considered the situation in which the probability for labeling is some

unknown function of a subset of attributes used to train the classifier. This is referred to as

the SAR assumption. In order to estimate the labeling mechanism from SAR PU data, [1]

borrowed a value from work on causal inference [37, 43] called the propensity score, which

indicates the probability a positive example is selected for labeling. The propensity score

e(x) is assigned to each positive example

e(x) = Pr(s = 1|y = 1,x). (1.12)
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Under the SCAR assumption, e(x) is the same for all positive examples and is equal to

the label frequency c. Bekker et al. [1] identified another possible assumption: the probability

for an example to be labeled could depend directly on the probability that the example is

positive. This third possibility is called the Selected Not At Random (SNAR) assumption.

If the propensity function can be learned or accurately represented by domain knowledge,

this is equivalent to partially matching the positive distribution [27, 29, 44]. Partial matching

in a PU learning context begins by making density estimates on two distributions: the first

being the positive distribution resulting from estimation on the labeled examples, and the

second being the overall distribution by estimating on all the data. One can then partially

match the estimated overall distribution by minimizing some divergence criteria with a scaled

version of the estimated positive distribution, where the class prior is the scaling factor [29,44].

Of course, there can still exist some unlabeled positive examples which would not be captured

by the partially matched positive distribution.

This thesis instead seeks to explore a method of maximizing the KL divergence between the

predicted positive distribution and the unlabeled distribution to arrive at better predictions

for geothermal favorability in a PU learning context.

Probabilistic Gap The probabilistic gap (PG) assumption is also known as the invariance

of order assumption as used in [42, 45], and is closely related to the general smoothness

assumption [27]. PG is a specific case of SAR that supposes that positive examples which

are more similar to negative examples are generally less likely to be labeled. The PG for

a dataset can be viewed as the difficulty of labeling a specific example. Furthermore, the

propensity function is a non-negative, monotone increasing function of the PG [29]. One can

use this assumption to select reliable negative examples, which one might do when applying

a two-step technique described in Section 1.2.6.4, by selecting the unlabeled examples which

have a smaller PG than the smallest PG among the labeled examples [45]. The scenario
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examined in this thesis most probably falls under the SAR or PG assumptions, and could be

modeled using either.

1.2.4.3 General Data Assumptions

The three general data assumptions used when searching for PU learning classifiers are

negativity, separability, and smoothness, and are outlined in the following three paragraphs [27,

29].

Negativity Negativity supposes that all unlabeled examples are negative and trains a

classifier as if this were true. This is the approach taken in [5] and [6], and is often used simply

because it allows for the use of standard supervised binary classification algorithms [29]. This

assumption becomes less reliable if more unlabeled positive examples are expected to be

present in the dataset.

Separability Separability implies there is a decision boundary that optimally separates

positives from negatives. This boundary may be a complex shape given by a function,

where a parameter may be defined that optimally determines the position of the decision

boundary [29]. This can be stated succinctly: the two classes of interest are non-overlapping

or are naturally separated.

Smoothness Smoothness assumes examples that are close to each other in the feature

space will have similar posterior probabilities, and are likely to have the same label [29].
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1.2.5 Class Prior and Propensity Estimation

For the single-training-set scenario, relating class prior α to label frequency c under the

SCAR assumption may be performed by

α = Pr(y = 1)

c = Pr(s = 1)/α.

(1.13)

A similar relationship allows one to use the label frequency under the SCAR assumption

to transform the output of a classifier trained to model the label mechanism Pr(s = 1|x) to

the posterior probability of y

Pr(y = 1|x) = Pr(s = 1|x)/c. (1.14)

Still, the true value of the label frequency depends on a piece of information that can not

be definitively known: whether the number of unlabeled examples is small due to a small

positive class prior probability or a low label frequency [1,27]. Estimating this value, then, is

difficult without making further assumptions.

The following assumptions are made within the literature in order to facilitate identifying

the class prior [1, 29]:

• Separability : The positive and negative classes are non-overlapping [38,40,46]. If all

unlabeled positives could be somehow identified, an estimate for the class prior would

naturally follow [29].

• Positive subdomain/anchor set : Define a subdomain A as any subset of the data

determined by certain attribute values (partial variable assignment) [47]. Under the

SCAR assumption, within any A, the label frequency remains constant and is equal to
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the overall label frequency of the dataset, derived in [47]

Pr(s = 1|x ∈ A, y = 1) = Pr(s = 1|y = 1) = c, (1.15)

and

c =
Pr(s = 1|x ∈ A)

Pr(y = 1|x ∈ A)
. (1.16)

If A is a positive subdomain (anchor set) where Pr(y = 1|x ∈ A) = 1, the probability of

being labeled within A is the proportion of labeled examples among all examples within

A and is exactly the label frequency of the dataset. In general, for all subdomains within

the instance space, this probability is actually a lower bound on the label frequency [47],

c ≥ Pr(s = 1|x ∈ A). (1.17)

To summarize, if such a purely positive anchor set can be found, the label frequency is

calculated as the ratio of labeled examples to positive examples in this subdomain [44,

47–49].

• Positive function: This is a relaxation of the positive subdomain assumption in that

it is not required to define a positive subdomain as resulting from partial variable

assignment, but any function can define such a purely positive subdomain [2].

• Irreducibility : The negative distribution is irreducible and cannot contain any examples

from the positive distribution [50,51]. Irreducibility is implied by the three assumptions

above.

The validity of these assumptions can only be tested on synthetic PU data for which

the true distributions are known. For instance, we cannot assume irreducibility because it

is highly likely that our unlabeled distribution contains positives and we have no known
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examples from the negative distribution. It can be possible to identify very likely negative

data, which is the goal of many PU learning techniques.

1.2.6 PU Learning Techniques

1.2.6.1 Elkan-Noto (EN) Method

An NTC is a classifier which has been trained on PU data to separate positive from unlabeled

data in a naïve manner, that is, as if the data were fully-supervised [38]. Formally, it is a

function g(x) that maps the positive and unlabeled distributions, fxp(x) and fxu(x), to the

posterior probability that an example is selected to be labeled, Pr(s = 1|x)

g(x) = Pr(s = 1|x) ≡
fxp(x)

fxp(x) + fxu(x)
. (1.18)

Taking f(x) to be a traditional classifier and g(x) to be its associated NTC, because f is

a monotonically increasing function of g, if the goal is merely to provide optimal ranking of

examples then g is equivalent to f [38]. If one requires more detailed estimates of PU classifier

performance, obtaining an accurate estimate of the class prior can allow for a reduction

in the bias resulting from the use of performance measures intended for models trained on

supervised data to evaluate models trained on PU data [8].

Overall, [38] propose two methods for obtaining the traditional classifier f(x) from the

NTC g(x). Under the SCAR assumption,

Pr(s = 1|y = 1,x) = Pr(s = 1|y = 1) = c. (1.19)

Replacing the posteriors in Equation 1.14 with their respective classifier outputs, we have

Pr (y = 1|x) =
Pr (s = 1|x)

Pr (s = 1|y = 1)
=
g(x)

c
= f(x). (1.20)
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Therefore, under the SCAR assumption, an NTC g(x) trained on the labeled positives and

unlabeled data from a sample population produces conditional probabilities that differ by

a constant factor c from those produced by a model f(x) trained from the same sample

population that has access to the fully labeled positive and negative examples.

With Equation 1.20 and one of the following three estimators for c, an estimate for f(x)

is obtained

ĉe1 =
1

|P |
∑
x∈P

g(x), (1.21)

ĉe2 =

∑
x∈P g(x)∑
x∈V g(x)

, (1.22)

or

ĉe3 = max
x∈V

g(x), (1.23)

where V is a validation set which is sampled from the entire dataset in the same manner as

the training set and P is the subset of labeled positive examples within V . This is the first

method given by [38], whereas the second method weights each individual training example.

Positive examples get unit weight and unlabeled examples are duplicated such that each copy

gets a complementary weight. A weight of Pr(y = 1|x, s = 0) gets assigned to one copy and

the other gets assigned the weight of 1− Pr(y = 1|x, s = 0). An estimate for α = Pr(y = 1)

can be obtained from the following

α̂ = Pr (y = 1) =
n2

m
∑

x∈P g(x)
, (1.24)

where n is the number of labeled examples in the training set, and m is the total number of

examples in the training set.
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1.2.6.2 TIcE: Tree Induction for Label Frequency Estimation

In the Tree Induction for Label Frequency (c) Estimation (TIcE) strategy, decision trees

are used to find a strong likely-positive subset within a sampled dataset [47]. This strategy

relies on the assumption that such a positive-only subdomain exists within the dataset that

depends partially on the dataset’s attributes. This is a relaxed assumption compared to the

separability assumption, which states that the positive and negative examples are separable

without overlap. In TIcE, the dataset is randomly split into two parts. The first is used to

create the decision trees and the second is used to estimate the label frequency. In order to

find the pure-positive subsets, the maximum biased-to-zero estimate for the proportion of

positives (max-bepp) score from [52] is used to score the splits [47]. A bepp score at each node

is calculated by dividing the number of positive examples P by the total number of examples

T seen by the node

bepp =
P

T + k
, (1.25)

where k is the “to-zero” bias which prefers larger subsets; larger values of k brings the estimate

closer to zero. Define the children of a node to be those nodes which immediately follow in

the tree. For max-bepp, the split at each node whose children contain the maximum overall

bepp score is selected. The label frequency c is converted to the class prior with α̂ = L
(ĉT )

,

where L is the number of labeled examples and T is the total. Algorithm performance is

measured by the absolute error between α̂ and α. The three hyperparameters available for

tuning this strategy are k (the max-bepp parameter), M (the maximum number of splits),

and f (the number of tree/estimation folds).

1.2.6.3 KM2

If one examines the form of Equation 1.6, it becomes clear that the distribution fx = Pr(x)

resembles a mixture model with two components, where α is also known as the mixing
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proportion within the mixture proportion estimation (MPE) literature [2]. The goal of MPE

is to determine the ratio or weight of a component distribution contained within a mixture

distribution by learning from a number of samples originating from the mixture and some

number originating from the component [2, 49]. It uses the positive function assumption,

which is a relaxed version of the positive subdomain assumption, see Subsection 1.2.5. MPE

is used for anomaly detection and crowdsourcing, among other applications, and is the basis

for the KM2 strategy [2]. It has good theoretical guarantees for convergence on the condition

that the component distributions satisfy the positive function assumption, although its major

weakness is that it is quite slow compared to, say, TIcE, and can only be run on a small

subset of larger datasets [29, 47]. Indeed, the authors of the KM2 paper used a maximum of

3200 samples for evaluating its performance against other strategies [2].

Given a mixture distribution fx comprised of component distributions fxp and fxn , we

have

fx = αfxp + (1− α)fxn , (1.26)

and

fxn = λfx + (1− λ)fxp , (1.27)

where λ = 1
1−α .

KM2, which notably does not require the computation of an estimate for the conditional

probability, works by embedding the distributions into a reproducing kernel Hilbert space

(RKHS) in order to produce an accurate estimate for the mixture proportion (class prior)

α [2]. The RHKS is a simpler functional space which allows for the evaluation of functions

through the use of its reproducing kernel without having to explicitly compute high- to

infinite-dimensional calculations in the feature space.
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1.2.6.4 Two-Step Techniques

Two-step techniques are so-called because they generally consist of two distinct steps and an

optional third step:

(1) Identify reliable likely negatives (and positives) within the unlabeled distribution. The

goal is to augment the known positives with a set of highly likely negatives.

(2) Use some (semi-) supervised learning technique such as SVMs, Naive Bayes, or expectation-

maximization (EM), to learn the classifier to separate the positive and negative distribu-

tions.

(3) Select the best classifier based on some criteria.

Two-step techniques rely on the separability and smoothness assumptions on the data.

A bit more detail on each step is given below. For an overview and comparison of many

two-step techniques, see [29].

Step 1: Identify reliable negatives (and positives) The first step in the two-step

approach is to identify reliable negatives within the unlabeled distribution by using some

distance measure to select examples which are very different from the labeled positive examples.

This is achieved by methods such as k-means clustering [53], k-nearest neighbors [54],

probabilistic gap [45], and embedding spies from the positive distribution into the negative

examples [55], along with other techniques, many of which originated in the text classification

literature [29].

Step 2: Use some (semi-) supervised learning technique Once the reliable negatives

are extracted from the dataset, a supervised or semi-supervised classifier is trained using

the labeled positives and the reliable negatives. Any supervised classifier can be used, and

the examples given in [29] include SVMs or Naive Bayes classifiers in addition to custom
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iterative algorithms or distance-based approaches. EM can be used to find the best classifier

in a semi-supervised learning scheme [29].

Step 3: Select the best classifier if applicable If an iterative or semi-supervised EM

approach is taken, a third step is needed to select the best classifier using some criteria such

as voting [56], change in F1 score [57] or probability of error [55].

1.2.6.5 SAR-EM

When the assumptions on the selection or labeling mechanism are relaxed from the SCAR to

the SAR assumption, EM can be applied to learn the classifier model and the propensity

model in tandem by jointly maximizing their expected log likelihood [1].

In SAR-EM, the propensity scores are used to reweight the data in a negative weighting

scheme, so an estimator which can appropriately handle negative sample weights must be

used for propensity score learning unless this scheme or the estimator is modified to account

for this. Unfortunately, XGBoost is not well-suited to deal with negative sample weights,

so for the results in this thesis, SAR-EM is only applied to the output of of an LR model.

In summary, given the estimated propensity score ei for each data point xi, every labeled

positive example receives a weight 1
ei
, and negative examples with weights 1− 1

ei
are added

in tandem to match the labeled example count. From the definition of SAR, the propensity

score model is learned from a subset of attributes called the propensity attributes.

The EM equations are given in 1.28 and 1.29. We are interested in finding the correct

prediction for the expected probability ŷi that example xi and label si belong to the positive

class. To do so, we apply the expected classification and propensity score models f̂ and ê

27



Expectation step

ŷi = Pr(yi = 1|si, xi, f̂ , ê)

= si + (1− si)
f̂(xi)(1− ê(xi))
1− f̂(xi)ê(xi)

.
(1.28)

Next, the expected probabilities ŷi are used to jointly optimize the expected log likelihood

of f and e, which are the models to be learned and to be fed back into the expectation step

Maximization step

argmaxf,e
n∑
i=1

Eyi|xi,si,f̂ ,ê ln Pr(xi, si, yi|f, e)

= argmaxf
n∑
i=1

[ŷi ln f(xi) + (1− ŷi) ln(1− f(xi))] ,

argmaxe
n∑
i=1

ŷi [si ln e(xi) + (1− si) ln(1− e(xi))] .

(1.29)

Taking a closer look at Equation 1.29, we optimize the classification model f via the

following

argmaxf
n∑
i=1

[ŷi ln f(xi) + (1− ŷi) ln(1− f(xi))] ,

where f receives two weighted versions of each example xi. The first term, ŷi ln f(xi) indicates

the positively-weighted example, with ŷi being the expected probability of xi being positive.

The second term, (1− ŷi) ln(1−f(xi)) indicates the negatively-weighted example, with (1− ŷi)

being the expected probability of xi being negative.

The propensity model e is optimized via

argmaxe
n∑
i=1

ŷi [si ln e(xi) + (1− si) ln(1− e(xi))] ,
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where e receives one weighted example with ŷi as its weight. Inside the brackets, si ln e(xi) +

(1 − si) ln(1 − e(xi)) reduces to ln e(xi) in the positive case where s = 1, and ln(1 − e(xi))

otherwise.

Unfortunately, if the propensity score depends on the same attributes as the classifier

model, it is unidentifiable whether an unlabeled example is unlabeled due to either the

propensity score or the class probability being low without making further assumptions on

the propensity score. This is the main weakness of this approach and, as [58] shows, in this

scenario many possible propensity score/posterior class probability combinations can yield

the same observed data.

1.2.6.6 DEDPUL: Difference-of-Estimated-Densities-based Positive-Unlabeled

Learning

The main insight gained from [59] is that the process of obtaining predictions via an NTC

g(x) is both a prior and a posterior-preserving transformation. The relationship between

unlabeled and positive distributions and the posterior via the NTC is formally defined in

Equation 1.18 [38]. To cope with the unidentifiability of α, DEDPUL [59] predicts α∗, which

is the upper limit on α, given by α∗ ≡ inf
x∼fyu (y)

fyu (y)

fyp (y)

(Biased) estimate of prior from NTC

α∗ = inf
x∼fxu (x)

1− g(x)

g(x)
. (1.30)

(Biased) estimate of posterior from NTC

p∗p(x) = α∗
g(x)

1− g(x)
. (1.31)
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These estimates can be obtained directly from the NTC predictions as in [38]. Instead, [59]

uses these predictions as a biased estimate of the posterior probability that a sample is

positive. From this biased estimate, the PDFs for the positive and unlabeled samples are

estimated. Bayes’ rule is then applied and EM is used to find the unbiased estimates for the

prior and posterior probabilities

Expectation step: unbiased estimate of posterior

p̃p(y) = min

(
α̃
f̃yp(y)

f̃yu(y)
, 1

)
. (1.32)

Maximization step: unbiased estimate of prior

α̃ =
1

|Yu|
∑
y∈Yu

(p̃p(y)). (1.33)

An alternate method of estimating α∗ is used if the EM algorithm converges trivially.

This alternate method uses the maximum slope of the difference D(α̃), which is defined as

D(α̃) = α̃− 1

|Yu|
∑
y∈Yu

(p̃p(y)), (1.34)

where p̃p is obtained from

p̃p(y) = min(α̃ ∗ r̃(y), 1), (1.35)

and r̃(y) is the sorted array of density ratios after the application of smoothing heuristics

(monotonization and rolling median),

r̃(y) =

{
fyp(y)

fyu(y)
, y ∈ Ỹu

}
. (1.36)

For the experiment in [59], the mixing proportion (class prior) α is varied in α ∈
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{0.05, 0.25, 0.50, 0.75, 0.95}, while |Xp| is held constant by adding unlabeled examples to

increase |Xu|. This lowest tested class prior of 0.05 is far from the known alpha of the USGS

2008 dataset, which is ≈ 0.0014 [5].

1.2.6.7 Confident Learning

A method that relies more on cleaning up existing data rather than modifying classification

strategies is confident learning [40]. In confident learning, it is assumed that the target

variable is noisy and results from a class-conditional process which gives the joint distribution

of positive and unlabeled examples. A technique called rank pruning is used which employs

k-nearest neighbors to find likely positives and negatives, and uses probabilistic thresholds

and ranking to create a sense of confidence in the labels available for training and testing. A

preliminary application of confident learning techniques to the 2008 USGS dataset found (out

of the total 725,442 data points) 88,695 near-duplicate data points, 42,031 outlier data points

(data points which may be out-of-distribution or anomalous), and from 125 to 170 potentially

mislabeled data points. Duplicate and near-duplicate data points may indicate inconsistencies

in the dataset and can potentially adversely impact the performance of classifiers trained on

this dataset. More investigation is needed to determine the effect of pruning these potentially

problematic data points, but is beyond the scope of this thesis.

1.2.7 A Note on Propensity Score Estimation

As presented in [58], an alternate formulation for learning the propensity score involves

maximizing the posterior probability of the label indicator in one of two scenarios:

• The propensity score can follow any arbitrary function but the positive and negative

distributions cannot overlap (local certainty scenario) or

• The propensity score must be a monotonic decreasing function of Pr(y = 1|x) (proba-

bilistic gap scenario).
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Table 1.1: Comparison of attributes between state-of-the-art PU learning approaches. As of the writing of
this thesis, SAR-EM [1] is the only general PU learning algorithm based on the SAR assumption rather than
the more restrictive SCAR assumption. KM2 [2] is the algorithm with the least support for large datasets, as
explained in Section 1.2.6.3. nnPU [3] and AlphaMax [4] are not evaluated in this thesis, but are included in
this table to give the reader a more general overview of the PU learning landscape.

Algorithm SCAR/SAR MPE Estimates α Handles large datasets

EN [38] SCAR Yes Yes Yes
TIcE [47] SCAR Yes Yes Yes
KM2 [2] SCAR Yes Yes No
SAR-EM [1] SAR Yes Yes Yes
nnPU [3] SCAR No No Yes
AlphaMax [4] SCAR Yes Yes Yes
DEDPUL [59] SCAR Yes Yes Yes

For the local certainty scenario, the propensity score e can be described by the following

relationship

e =
Pr(s = 1) Pr(x|s = 1)

Pr(y = 1) Pr(x|y = 1)
. (1.37)

However, since one cannot sample from Pr(x|y = 1) and an estimate for Pr(y = 1) cannot be

obtained, an approximate substitution must be made [58].

Let e∗ be a modified estimate for the true propensity score, e. Since e is undefined for

negative examples, a substitute estimate e∗ is

e∗ =
Pr(s = 1) Pr(x|s = 1)

Pr(x)
, (1.38)

where e∗ is equal to 0 for all negative examples. Pr(s = 1) is calculated as the ratio of labeled

to unlabeled data. The ratio Pr(x|s=1)
Pr(x)

can be estimated by training an NTC to separate

labeled vs. unlabeled data and using the output [58].

For the probabilistic gap scenario, an NTC can be trained in the same manner to

distinguish labeled vs. unlabeled data. Then the propensity score can be related to the output

32



of this classifier h(x)

e =
√

sup
x∼X

[h(x)]h(x). (1.39)

Both of these methods result in propensity score estimations which are identifiable and close

to the true propensity score, claims which [1] does not make [58].

1.2.8 Evaluating PU classifiers

The most popular metrics in the general machine learning literature for evaluating classifiers in

the supervised scenario include the accuracy, error rate, precision, recall, and F1 score [27,29].

These are calculated from the number of true positive predictions (TP), true negative

predictions (TN), false positive predictions (FP), and false negative predictions (FN) when

comparing the classifier’s predictions to the ground truth labels.

Traditional evaluation of a classifier requires a fully labeled sample from the true distri-

bution. It is possible to simulate PU data for which the true labels are known, either in a

fully-synthetic manner by drawing from known distributions to generate the data, or in a

semi-synthetic manner by adapting existing fully labeled datasets and hiding some proportion

of the labels [27]. One can then use this synthetic data to evaluate PU classification algorithms.

Despite the utility of synthetic datasets in comparing PU learning algorithms, such a fully

labeled sample is not available in real world PU learning scenarios, so an NTC must be

evaluated in a non-traditional manner, that is, by using the unlabeled data as a surrogate for

labeled negative examples.

The standard cardinal metrics such as TN and FN cannot be determined. Since these are

necessary to calculate the accuracy and precision, neither of these metrics, nor derivatives

of them can be calculated directly. If the classifier outputs a positive classification for an

unlabeled data point, it is unknown whether this is due to a poorly-fit model or to mislabeled

data (an unlabeled data point that should actually be considered positive). These most

popular supervised machine learning metrics are summarized in Section 1.2.8.1.
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For some optimality criteria such as the receiver operating characteristic (ROC) curve,

precision-recall (PR) curve, or balanced error (BER), under traditional evaluation, an NTC

can achieve similar performance as an optimal traditional classifier [50, 60]. This is true

because in many scenarios, these criteria rely on the optimal ranking of data points rather

than the prediction scores themselves [4, 8, 51]. As long as the ranking is unchanged, the

NTC optimized on these criteria is equivalent to the traditional classifier optimized on the

same criteria with a fully labeled sample.

Despite this surprising result, evaluating a classifier non-traditionally does add bias to

metrics such as the ROC area under the curve (ROC-AUC), precision, recall, accuracy, and F1

score. Because unlabeled examples are likely to contain unidentified positives, the ROC-AUC

estimated in a non-traditional manner by assuming all unlabeled examples are negative

is necessarily lower than the true ROC-AUC resulting from classification in a traditional

setting. This bias can be removed by incorporating knowledge about the class prior and noise

proportion, where the noise proportion is the ratio of mislabeled positives to correctly-labeled

positives within the training set [8]. The assumption made for the dataset used in this thesis

is that its noise proportion is zero.

Standard supervised learning uses a train-validate-test pipeline to train a classifier on

labeled data which can then be used in an inductive manner to predict on unlabeled data.

With PU learning, a classifier can be trained in either an inductive or transductive manner.

An inductive PU classifier is trained with labeled positive and unlabeled data and then

generalized to new unlabeled data. A transductive PU classifier is trained with labeled and

unlabeled data but cannot be used to generalize to new data; the data to be labeled is

included in the training set.

Jaskie and Spanias [27] differentiate between evaluating PU algorithms and evaluating

PU models. Evaluating PU algorithms involves comparing algorithms to one another via

benchmarking on simulated PU data. Evaluating PU models is concerned with a PU

34



algorithm’s performance on a particular, real PU dataset and must be done differently since

the traditional metrics cannot be calculated. This thesis is mainly concerned with evaluation

of PU models on the 2008 USGS dataset used in [5] and [6].

1.2.8.1 Standard evaluation metrics

Accuracy

accuracy =
TP + TN

TP + TN + FP + FN
(1.40)

Error rate

errorrate = 1− accuracy =
FP + FN

TP + FP + TN + FN
(1.41)

Precision

precision =
TP

TP + FP
(1.42)

Recall

recall =
TP

TP + FN
=

TP

P
(1.43)

F1 score

F1 = 2× (precision × recall)

(precision + recall)
=

2TP

2TP + FP + FN
(1.44)

The F1 score is the most widely-used metric in the PU learning literature, in addition to

being the most appropriate metric for imbalanced PU learning problems out of the standard

four (the other three being precision, recall, accuracy) [29, 61]. Mordensky et al. [5] use the

models’ F1 scores for hyperparameter tuning and model evaluation. When used with PU

data, the F1 score will incorrectly penalize unlabeled samples if they are predicted positive

when indeed they should be considered positive. Thus, the F1 score will always underestimate

the classifier’s true performance and may fail to differentiate a classifier which does a better

job at predicting unlabeled positive samples.
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ROC curve and ROC-AUC score The ROC curve shows a model’s true positive rate

versus false positive rate as the decision boundary is varied. The ROC-AUC score reduces

the ROC curve to a single number, where a higher score indicates a better classifier, but does

not account for imbalanced data. Alternatives for when the classes are severely imbalanced

are the PR curve and its associated area under the curve (PR-AUC) and average precision

score (an alternative formulation to the PR-AUC) [62].

Precision-recall (PR) curve PR curves show a model’s precision as a function of its

recall and, compared to ROC curves, allow for better comparison when class sizes are heavily

imbalanced [63].

Matthews correlation coefficient (MCC)

MCC =
TP × TN − FP × FN√

((TP + FP)(TP + FN )(TN + FP)(TN + FN ))
(1.45)

The Matthews correlation coefficient (MCC) is symmetric in the way it treats positive and

negative classes with equal importance. It is also robust to imbalanced class sizes, making it

a useful metric for many datasets [27]. Ramola et al. [64] derive an unbiased estimate for

the MCC to be used on PU data when one does not have access to the true labels for all

positives and negatives.

1.2.8.2 Metrics for evaluating PU learning algorithms

Because the F1 score grows as both the precision and recall increase, [7] recognized that an

analog to this score can be constructed from just the recall and the estimated class prior

taken as the percentage of labeled positive examples in X, Pr(ŷ = 1)
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PU-estimated F1 score (PUF-score)

PUF -score =
recall2

Pr(ŷ = 1)
, (1.46)

where the recall can be estimated from the known labeled positives PL and the number of

correct positive predictions TPL

r̂ecall =
TPL

PL
=

∑
s=1 ŷ∑
s=1 s

. (1.47)

Jain et al. [8] derive unbiased estimates of the true positive rate γ, false positive rate

η, precision ρ and ROC-AUC. They begin from definitions for γ and η that are given by

the expectation E with respect to the positive and negative distributions P , N over some

classifier h : X → Y

True positive rate/recall

γ = EP [f(x)], (1.48)

False positive rate

η = EN [f(x)]. (1.49)

The unbiased estimate of γ is simply the empirical mean of the classifier h(x) over PL,

which is the sample of labeled positives

Estimate of true positive rate, γ

γ̂ =
1

|PL|
∑
x∈PL

f(x). (1.50)

Similarly, an intermediate estimate for η, η̂PU , can be taken by considering the naïve
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empirical mean over the unlabeled samples U

Estimate of PU false positive rate, ηPU

η̂PU =
1

|U |
∑
x∈U

f(x). (1.51)

With η̂PU , γ̂, and an estimate α̂ for the class prior, Jain et al. [8] arrive at the unbiased

estimate for η

Estimate of false positive rate, η

η̂ =
η̂PU − α̂γ̂

1− α̂
. (1.52)

Using these variables, they also give an unbiased estimate for the precision ρ

Estimate of precision, ρ

ρ̂ =
α̂γ̂

η̂PU
. (1.53)

Finally, Jain et al. [8] provide the unbiased estimate for the ROC-AUC, given α̂ and the

biased ROC-AUC, calculated from training a classifier to predict positive or unlabeled

Estimate of area under the ROC curve, AUC

ÂUC =
AUC PU − α̂

2

1− α̂
. (1.54)

The results of these PU metrics on the naïve strategies examined in this thesis are included

in Table 3.6.
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Increasing DKL

p (unlabeled) pdf

q (positive) pdf

Figure 1.5: Illustration of DKL between two univariate Gaussian distributions. As the mean of q (the
estimated PDF of the positive instances) increases and/or its variance decreases, the KL divergence from p to
q increases.

1.2.8.3 Alternative Evaluation Metrics

Kullback-Leibler divergence The Kullback-Leibler (KL) divergence, also called the

relative entropy or I-divergence [65], allows for comparison between two arbitrary distributions

P and Q without knowing the true posterior distribution. In the continuous case, for random

variables P and Q, the KL divergence from P to Q is

DKL(P ||Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx. (1.55)

The DKL(P ||Q) has a lower bound at zero, which indicates that the two distributions are

identical. In the positive direction it is unbounded and increases as the mean of Q increases

and its variance decreases. It is not symmetric, i.e. DKL(P ||Q) 6= DKL(Q||P ), and it does

not satisfy the triangle equality [30]. For univariate Gaussian distributions, once maximum

likelihood estimates are obtained for each distribution’s mean and variance, the closed-form

solution of Equation 1.55 exists using these estimates for p ∼ N (µp, σp) and q ∼ N (µq, σq) [66]
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DKL(p, q) = log
σq
σp

+
σ2
p + (µp − µq)2

2σ2
q

− 1

2
. (1.56)

We will henceforth use the abbreviation DKL to refer to the KL divergence taken from P to

Q, where P is the normal score transformed prior distribution of unlabeled samples and Q is

the normal score transformed estimated posterior distribution of positive predictions. We

apply the DKL in the selection of hyperparameters by favoring classifiers which predict the

Q that gives the maximum DKL. By maximizing the DKL instead of traditional supervised

classification metrics such as the F1 score or ROC-AUC, the goal is to select more appropriate

hyperparameters when little is known about the true distribution from which we are sampling.

1.3 Contributions

1.3.1 The Use of the DKL as an Evaluation Metric

Although theDKL is often used in anomaly detection [31,32], partial distribution matching [44],

and class prior estimation in unlabeled test data [33], where the goal is to minimize divergence

between the PDFs of the training and test data, the maximization of the DKL between

the unlabeled distribution and the predicted positive distribution as a method of model

evaluation for PU learning problems, presented in Chapter 2, is a novel application. This

thesis demonstrates that the DKL can make known positive predictions more positive. Despite

this, without full knowledge of the true distribution, it is ultimately unknown whether the

effect of the DKL pushing the distributions apart is due to the predicted area containing true

positive examples or if it is predicting a larger positive area than is appropriate.

1.3.2 Comparison of PU Learning Approaches

A preliminary comparison of PU learning approaches shows that the best classifier perfor-

mance (F1 score) is achieved by SAR-EM when its favorability classifier uses the optimal
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hyperparameters found through F1 score tuning. This method also produces a class prior

estimate that is closest to the estimated natural class balance as reported in [5,6]. On the

other hand, using the optimized class weight hyperparameters both for LR and XGBoost, we

show that the true class prior may be considerably underestimated by the average system

power calculation provided by [5, 6]; the true positive class may contain many more data

points than are labeled in the dataset.
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2 Methodology

2.1 Experimental Design

The aim of this thesis is two-fold: to apply the DKL as an evaluation metric in selecting

hyperparameters for machine learning models training with PU data and to compare PU

learning strategies, contrasting them with approaches that simply assume all unlabeled data

as negative. One thing to keep in mind is that we are restricting our scope to evaluation

on the data at hand; we do not evaluate each model on synthetic data that provides access

to true labels, so we are forced to make conclusions that may be specific to our particular

dataset.

In this thesis, we firstly train two classes of machine learning models consisting of one

linear method and one nonlinear method: LR and XGBoost, respectively. The optimal

hyperparameters for each are selected via grid search optimized on four separate measures of

model success over test data which is withheld via subsampled stratified k-fold cross validation

over 120 folds with a ratio of 80:20 train:test as per [5,6]. The evaluation metrics used for

optimization in each case are the F1 score, recall, ROC-AUC, and the DKL. These two classes

of models, eight cases total, are trained as NTCs by assuming all unlabeled data points are

negative; they will be referred to as the “naïve” methods and, in addition to reproducing

the results from [5,6], are intended to show the potential advantage of using the DKL as a

measure of model ability with PU data.

Secondly, we apply two state-of-the-art PU learning algorithms to the data, SAR-EM

and DEDPUL, and include results from two other PU learning algorithms, TIcE and KM2,
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Figure 2.1: Overview of train-all-predict-all and out-of-sample prediction schemes. Both methods use
the same strategy to arrive at the optimal hyperparameters; subsampling of the validation and test sets is
carried out at this step to reflect the expert-opinion positive-negative ratio of 1:700. At the final step in the
out-of-sample prediction scheme, no such subsampling is performed. This step is illustrated in Figure 2.2.

where TIcE is used for class label prediction and class prior estimation and KM2 is used

only for class label prediction. Because all four of these PU learning strategies require the

training of an NTC in their formulation, either LR or XGBoost are used, depending on

their compatibility with that specific PU learning strategy. In particular, because SAR-EM

uses negative example weights, and XGBoost does not support the use of negative example
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Figure 2.2: Obtaining out-of-sample test results via standard stratified k-fold cross-validation for k = 5.
Stratification ensures coverage over the entire dataset. Figure adapted from scikit-learn documentation [10,11].

weights, LR is used as the sole class of NTC for SAR-EM. Three LR models are trained: one

with default hyperparameters, and the other two using the hyperparameters optimized for

either the F1 score or DKL.

Besides the test scores and predicted class prior for each model (except test scores for

DEDPUL and KM2), we have two main tools for analysis at our disposal. The first are

favorability maps generated by fusing location data with the models’ normal score transformed

predicted favorability for each cell. Circles within the favorability maps indicate cells with

known geothermal energy sites. Secondly we have ridge and CDF plots of the predicted

positive distribution shown alongside the unlabeled distribution for each model; these are

also normal score transformed in each case. The ridge and CDF plots show the success of

each model at separating the two distributions, even when the true class labels are unknown.
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2.1.1 Data Features and Labels

For a comparison of the models created in [5] and [6], this thesis uses one of the highest-

performing dataset combinations from 2008 which consists of the following five geophysical

features:

• Heat flow: interpolated map of estimated vertical heat flow in milliwatts per square

meter (mW/m2)

• Fault distance: distance in meters to the nearest Quaternary fault

• Magma distance: distance in meters to the nearest magmatic activity

• Seismic density: density of epicenters for seismic events ≥ M3 within a 4 km radius in

number of events per square kilometer (km2)

• Stress: maximum horizontal stress in megapascals (MPa)

Coordinates were removed from the data prior to training and the data was shuffled so

that trained models would not explicitly depend on location.

2.1.2 Applying the DKL to Select Hyperparameters

The main test results in Table 3.4 were obtained by first generating 120 random train/test

splits at a ratio of 80:20, using a random number generator with the same sequence of seeds as

used by [5] and [6] for reproducibility. The test sets were subsampled to maintain the sample’s

original estimated target variable distribution: a positive-to-negative ratio of about 1:700 [5,6].

A hyperparameter grid search was performed using stratified k-fold cross-validation with five

folds. The validation sets were subsampled similarly to the test sets, maintaining a 1:700

ratio. Subsampling the validation and test sets allows the ratio of positives to negatives to

more accurately reflect the naturally occurring ratio. Because we are limited to traditional
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evaluation of algorithms trained on PU data, subsampling at this stage allows us to remove a

bit of the resulting bias seen in the test scores.

In order to investigate using the DKL as an evaluation metric, the naïve models are

evaluated by taking the maximum F1 score, recall, ROC-AUC, or DKL when scored on the

validation set. The hyperparameters of the best-performing models are then averaged over

all 120 train/test splits for each metric as reported in Table 3.4. Test scores are generated by

training the final classifiers using the optimal average hyperparameters on all training data,

then predicting on the test sets. The test scores are then averaged to give the final reported

values.

The label frequency is estimated using the ratio of the labeled positives to the total

predicted positive examples. The naïve estimate for the class prior is taken as the ratio of

predicted positives to total examples. Experimental details specific to each algorithm follow.

2.1.2.1 Logistic Regression

Since its introduction in 1944 in [67], LR has become ubiquitous in the machine learning

literature as a simple and effective solution to some linearly separable classification problems,

in cases where more complexity is unnecessary, and as a baseline for comparing more complex

machine learning algorithms. LR applies a logit transformation to the dependent variable Y

in order to facilitate modeling a sigmoidal decision function. The natural log of the odds of y

(ratio of probability of event y occurring to the event y not occurring) is taken:

logit(y) = ln

(
Pr(y = 1|x)

1− Pr(y = 1|x)

)
= β0 + β1x1 + · · ·+ βnxn (2.1)

where x1 . . . xn are the input features, and β0 . . . βn are the regression coefficients, fit

either through maximum likelihood estimation or weighted least squares. Taking the antilog

of both sides results in the probability Pr(y = 1|x0, . . . , xn):
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Pr(y = 1|x0, . . . , xn) =
eβ0+β1x1+···+βnxn

1 + eβ0+β1x1+···+βnxn
(2.2)

The probability output of Equation 2.2 is thresholded to result in the classifier output. A

hyperparameter search for LR is performed over the two most relevant hyperparameters in

alignment with [5] and [6]: the class weight and the inverse regularization strength. These

hyperparameters are reported in Table 3.2. The same threshold of 0.5 was also used. The

test results for LR models are found in Tables 3.4, 3.5, and 3.1.

2.1.2.2 XGBoost

XGBoost is a learning algorithm that was first introduced in 2016 by [24]. It has since become

a popular first choice for many data scientists for exploring the application of nonlinear models

to more complex problems. It relies on boosting a weak learner (an archetypal simple learning

model such as a decision tree). Many trees are arranged into an ensemble configuration

which is learned through training. Each training round iteration passes the residual from

the previous tree to the next tree, which can then improve upon the previous result based

on some objective function. Once the model begins to overfit and no longer improves upon

the previous iteration, the training is finished. The terminal node in each branch outputs a

probability value and the average probability at every terminal node gives the final output.

Again, a similar setup to that used in [5] and [6] is used: a hyperparameter search over

the maximum depth of estimators, number of estimators, class weight, and learning rate

is performed. The resulting optimal hyperparameters are recorded in Table 3.3. The test

results for XGBoost are also found in Tables 3.4, 3.5, and 3.1.
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2.1.3 Comparing PU Learning Methods

2.1.3.1 SAR-EM

SAR-EM uses two LR classifiers: one to model the function separating positive/negative

examples, and one to model the propensity score function. As implemented in [1], no

hyperparameter optimization is performed on these final two classifiers. For comparison,

three models are trained: one using the optimal hyperparameters from maximizing the F1

score, one using the hyperparameters from maximizing the DKL, and the results from running

SAR-EM without any optimization. The test results for SAR-EM are found in Tables 3.4, 3.5,

and 3.1.

2.1.3.2 DEDPUL

The DEDPUL algorithm is designed to obtain transductive predictions of the unlabeled set

only. Inductive predictions over new data can be obtained from a trained model, however,

through interpolation. The NTC can be applied to new data, the likelihood ratio can be

predicted from mapping the new y(x) to the interpolated r(y), then predictions are found

by multiplying by α∗ and clipping to [0, 1]. For the purposes of this thesis, DEDPUL is

simply modified such that p̃p(y) is obtained for all points rather than just the unlabeled set.

DEDPUL test results are recorded in Table 3.1.

2.2 Model Evaluation

In the creation of supervised classification models, an inductive learning approach is taken [27].

In inductive learning, the goal is to create a generalized model by training on fully labeled

data that can then be expected to achieve similar performance on unlabeled data. An

effective inductive learning pipeline splits the available labeled data into randomized training,

validation, and test sets without leakage between the sets. Increasing performance on the
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Figure 2.3: Diagram showing the normal score transform pipeline for prediction scores and how this
transform affects the resulting PDF ridge plot. Top of diagram shows the PDF for the combined distribution
(including positive and unlabeled data), and bottom of diagram shows the PDFs for the separated positive
and unlabeled sets.

test set then makes it reasonably likely that the model will perform well on new, unseen

data. This contrasts with the goal of transductive learning, which is interested in optimizing

performance on a particular dataset. Models created through transductive learning take the

same data as their training and test sets and do not generalize well to new data. Under the

structural risk minimization (SRM) principle, inductive learning tries to estimate a function

over its entire domain and transductive learning tries to estimate only values of a function at

specific points in a discrete space [68,69].

As is the case for other semi-supervised learning models, some PU learning models can be

used inductively and some are purely transductive. DEDPUL is an example of an algorithm

that is designed to be used for transductive inference, but can be applied in an inductive

manner through interpolation on new data [59]. In this thesis, hyperparameters are optimized

in a pipeline designed to perform inductive inference, that is, they are tested on new data

which is unobserved at training. Once the optimal hyperparameters are found via averaging
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Figure 2.4: Example ridge (top) and CDF (bottom) plots from Mordensky et al. [6].

over all splits, they are used to train a new model on all training data (combined training

and validation sets) and test scores are averaged from the results of predicting on each test

set of the 120 total train/test splits.

Ridge plots such as that in Figure 2.4, taken from [6], show an estimate of the PDF and

cumulative distribution function (CDF) of the output of each algorithm. These estimates are

made via kernel density estimation methods on the normal score transformed output. An

illustration of the normal score transformation is shown in Figure 2.3. For Figures 3.9 and 3.10,

the two prediction schemes, train-all-predict-all (transductive) and out-of-sample prediction

(inductive), were employed to observe the behavior of the naïve models in each scenario

respectively. For the rest of the ridge plots and favorability maps, the train-all-predict-all
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scheme was used.

Raw predictions are normal score transformed via quantile transform, with the quantile

function for the normal distribution defined as the inverse of the CDF

Q(y) = Φ−1(y), (2.3)

where Φ is the CDF of the normal distribution

Φ(y) =
1

2

[
1 + erf

(
y − µ
σ
√

2

)]
, (2.4)

with a mean of µ and variance of σ2. This has the following PDF

φ(y) =
1√

2πσ2
e−

(y−µ)2

2σ2 . (2.5)
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3 Results

3.1 Identifying the Class Prior

Many PU learning methods rely on accurately identifying the class prior. Table 3.1 shows

the test results for class prior prediction. Compared to the estimated expert opinion-based

positive class prior of 1:700 or about 1.43e-3 positives per every one negative example,

SAR-EM achieves the closest class prior prediction with a MAE of 1.01e-4.

3.2 Optimal Hyperparameters

The optimal hyperparameters found through a grid search for each algorithm are provided in

Tables 3.2 and 3.3. To facilitate the grid search, 120 train/test splits are taken, from which

five subsampled stratified folds are used to create the train and validation sets for each split.

Each hyperparameter is taken as the average across all splits. Each real number is rounded

to two decimal places after the zero and hyperparameters that accept natural numbers are

rounded up. When XGBoost is tuned with the DKL, it benefits from a slightly faster learning

rate, but requires more branches and more estimators to achieve the maximum score, as seen

in Table 3.3.
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Table 3.1: Estimates for label frequency c and class prior α for SAR-EM using logistic regression (LR) with
F1-tuned (F1) and DKL-tuned (KL) and DEDPUL using XGB classifier models. Ground truth for class prior
estimation is the expert opinion-based class prior of ≈ 0.0014 (1.40× 10−3) [5, 6]. Each case is abbreviated
within the table as [NTC model ]+[source of hyperparameters ], e.g. LR+F1 is logistic regression tuned via F1

score. Bold text indicates the best result.

Strategy Est. label frequency Est. class prior Avg. class prior MAE

Naive/negative approach

LR+F1 9.56× 10−2 4.01× 10−3 2.57× 10−3

LR+KL 3.91× 10−3 9.81× 10−2 9.67× 10−2

XGB+F1 7.9× 10−2 4.85× 10−3 3.42× 10−3

XGB+KL 7.24× 10−2 5.29× 10−3 3.86× 10−3

SCAR-TIcE

LR+Default 3.23× 10−4 3.93× 10−6 1.43× 10−3

LR+F1 3.23× 10−4 1.00 9.99× 10−1

LR+KL 3.23× 10−4 1.00 9.99× 10−1

SCAR-KM2

LR+Default 8.95× 10−2 2.18× 10−2 2.03× 10−2

SAR-EM

LR+F1 1.04× 10−3 1.53× 10−3 1.01× 10−4

LR+KL 1.78× 10−3 1.39× 10−5 1.41× 10−3

LR+Default 9.66× 10−4 2.39× 10−2 2.25× 10−2

DEDPUL

XGB+F1 3.91× 10−4 2.00× 10−2 1.86× 10−2

XGB+Recall 3.91× 10−4 2.00× 10−2 1.86× 10−2

XGB+ROC-AUC 3.95× 10−4 2.92× 10−2 2.78× 10−2

XGB+KL 3.91× 10−4 2.00× 10−2 1.86× 10−2
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Table 3.2: Optimal hyperparameters for logistic regression per tuning metric used.

Metric C Class weight

F1 6000.05 248.32

Recall 14375.00 995.62

ROC-AUC 770.78 217.93

KL 5181.27 10.10

Table 3.3: Optimal hyperparameters for XGBoost per tuning metric used.

Metric Learning rate Max. depth Num. estimators Scale pos. weight

F1 0.23 3 61 205.92

Recall 0.55 3 59 224.00

ROC-AUC 0.17 2 66 192.08

KL 0.58 4 77 189.67

3.3 Model Performance

The results from comparing LR and XGBoost, tuned by maximizing the F1 score, recall,

ROC-AUC, or DKL are summarized in Table 3.4. Also in this table are the test results for

SCAR-TIcE and SAR-EM, tuned by maximizing either the F1 score or DKL. The best F1

score performance is achieved by the SAR-EM method using a classifier to predict ŷ that is

tuned by maximizing the F1 score. The classifier to predict ê uses the default hyperparameters.

Table 3.5 shows the test results when results over all data are obtained in a stratified

out-of-sample prediction scheme. This is meant to mimic the classifier’s performance in an

inductive inference scheme. The test set is not subsampled to maintain the natural class

balance of 1:700 in this configuration. Instead, five models are trained, each on a different
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subset of the data and used to make predictions on the remaining data so that out-of-sample

predictions are obtained across the entire dataset. Interestingly, LR tuned to the ROC-AUC

achieves the highest F1 score in this scheme. Also a bit surprisingly, there is much less

variation between the different strategies when the test predictions are created out-of-sample.

It is much more difficult to pick a clear winner based on the out-of-sample predictions.
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Table 3.4: Mean and std. dev. test scores over all 120 train/test splits. Model trained for inductive inference.
Each case is abbreviated within the table as [NTC model ]+[source of hyperparameters ], e.g. LR+F1 is logistic
regression tuned via F1 score. Bold text indicates the highest score for each metric.

F1 Recall ROC-AUC KL

Strategy Mean Std. Mean Std. Mean Std. Mean Std.

Naïve/negative approach

LR+F1 0.035 0.022 0.036 0.027 0.517 0.013 2.125 1.227

LR+Recall 0.014 0.002 0.438 0.057 0.677 0.028 2.037 1.165

LR+ROC-AUC 0.019 0.023 0.074 0.142 0.531 0.058 2.766 1.845

LR+KL 0.005 0.012 0.002 0.006 0.501 0.003 3.981 2.405

XGB+F1 0.025 0.016 0.034 0.023 0.516 0.011 2.810 1.604

XGB+Recall 0.024 0.011 0.068 0.031 0.531 0.016 18.234 24.830

XGB+ROC-AUC 0.024 0.019 0.028 0.025 0.513 0.012 2.888 1.755

XGB+KL 0.015 0.010 0.037 0.027 0.516 0.013 28.051 41.127

SCAR-TIcE

LR+Default 0.008 0.000 0.840 0.050 0.846 0.019 2.0247 1.147

LR+F1 0.028 0.024 0.032 0.027 0.815 0.028 2.708 1.780

LR+KL 0.007 0.014 0.008 0.028 0.792 0.024 8.23 8.94

SAR-EM

LR+Default 0.020 0.006 0.174 0.060 0.575 0.029 1.846 1.176

LR+F1 0.042 0.023 0.042 0.024 0.520 0.012 2.149 1.273

LR+KL 0.005 0.012 0.002 0.006 0.501 0.003 3.840 2.356
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Table 3.5: Out-of-sample test scores (inductive inference) over all data for k=5 folds. Each case is abbreviated
within the table as [NTC model ]+[source of hyperparameters ], e.g. LR+F1 is logistic regression tuned via F1

score. Bold text indicates the highest score for each metric.

Strategy F1 Recall ROC-AUC KL

LR+F1 0.013 0.054 0.843 1.422

LR+Recall 0.003 0.507 0.843 1.442

LR+ROC-AUC 0.016 0.043 0.843 1.493

LR+KL 0.007 0.004 0.843 2.341

XGB+F1 0.010 0.068 0.848 1.923

XGB+Recall 0.003 0.507 0.843 1.418

XGB+ROC-AUC 0.012 0.050 0.854 2.328

XGB+KL 0.004 0.040 0.803 9.158

The adapted (unbiased) PU scores from [7,8] for the naïve methods are shown in Table 3.6.

The equations for these scores are given in 1.2.8.2. The purpose of including this table is

to show that using these unbiased PU metrics can result in a different learning strategy

appearing more attractive if, for instance, the recall were favored. Interestingly, LR tuned by

maximizing the recall is ranked the best by four of the six PU metrics included. LR tuned by

maximizing the DKL achieves a ̂Precision that is an order of magnitude greater than the

other naïve methods.
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Table 3.6: Results of PU metrics, where PUF [7], T̂PR, F̂PRPU , F̂PR, ̂Precision, and ÂUC [8] are outlined
in Section 1.2.8.2. Scores result from models trained for inductive inference. Each case is abbreviated within
the table as [NTC model ]+[source of hyperparameters], e.g. LR+F1 is logistic regression tuned via F1 score.
Bold text indicates the highest score for each metric.

Strategy PUF T̂PR F̂PRPU F̂PR ̂Precision ÂUC

LR+F1 7.597 0.054 0.003 0.003 0.007 0.842

LR+Recall 700.154 0.518 0.111 0.110 0.002 0.842

LR+ROC-AUC 5.706 0.047 0.002 0.002 0.010 0.842

LR+KL 0.034 0.004 0.000 0.000 0.125 0.843

XGB+F1 8.644 0.058 0.005 0.005 0.005 0.842

XGB+Recall 22.825 0.094 0.009 0.009 0.004 0.827

XGB+ROC-AUC 4.862 0.043 0.003 0.003 0.006 0.849

XGB+KL 4.862 0.043 0.007 0.007 0.002 0.812

Box and whisker plots are provided in Figures 3.1 and 3.2. The median is shown with

a line and notch on each box. The box extends from the first to third quartiles and the

whiskers show the extent of 1.5 times the interquartile range. Outliers are depicted by the

hollow points. Figure 3.1 shows a comparison between the different naïve methods of LR and

XGBoost, trained by maximizing the F1 score, recall, ROC-AUC, or DKL. Figure 3.2 differs

in that it compares a few of the naïve strategies with one PU strategy, SAR-EM, which

requires the training of an NTC. This NTC is varied between tuning by F1 score, DKL, or

without tuning the default settings of C = 1.0 and using equal class weighting.
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(a) (b)

(c) (d)

Figure 3.1: Box and whisker plots showing evaluation metrics for logistic regression (LR) and XGBoost
(XGB), with hyperparameters tuned using the F1 score (F1), recall, ROC-AUC, or DKL (KL). Scores result
from averaging over 120 train/test splits in an inductive inference scheme. This figure included to show a
comparison of the various naïve methods.
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(a) (b)

(c) (d)

Figure 3.2: Box and whisker plots showing evaluation metrics for logistic regression (LR), XGBoost (XGB),
and SAR-EM, with hyperparameters tuned using the F1 score (F1) or DKL (KL). Fewer tuning methods are
included in this figure in order to show a comparison between select naïve strategies and one PU strategy.
For SAR-EM, tuning refers to the tuning of the NTC under the SCAR assumption. A SAR-EM experiment
involving no tuning is included, with the default parameters of C = 1.0 and equal class weighting. Scores
result from averaging over 120 train/test splits in an inductive inference scheme.
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3.4 Favorability Maps

The non-PU favorability maps are displayed in Figures 3.3 and 3.4. The favorability maps

from SAR-EM are provided in Figure 3.5 and those from DEDPUL are shown in Figure 3.6.

These favorability maps are generated from training each method on all data then predicting

on all data. Probability outputs from all methods are normal score transformed. For reference,

four favorability maps from [6] are provided in Section 1.2.1. These include two maps created

from WoE and LR using the methods from [9] and two created using LR and XGBoost in

the single-classifier strategy.
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(a) (b)

(c) (d)

Figure 3.3: Favorability maps for logistic regression (LR) tuned using (a) F1 scores (F1), (b) Recall, (c)
ROC-AUC, or (d) DKL (KL). Circles show the locations of known geothermal sites. Models are trained for
transductive inference.
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(a) (b)

(c) (d)

Figure 3.4: Favorability maps for XGBoost (XGB) tuned using (a) F1 scores (F1), (b) Recall, (c) ROC-AUC,
or (d) DKL (KL). Circles show the locations of known geothermal sites. Models are trained for transductive
inference.
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(a) (b)

(c)

Figure 3.5: Favorability maps for SAR-EM using logistic regression (LR) (a) with F1-tuned (F1), (b)
DKL-tuned (KL), and (c) default (no tuning) classifier models. Circles show the locations of known geothermal
sites. Models are trained for transductive inference.
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(a) (b)

(c) (d)

Figure 3.6: Favorability maps for DEDPUL with XGBoost (XGB) as NTC, tuned using (a) F1 scores (F1),
(b) Recall, (c) ROC-AUC, or (d) DKL (KL). Circles show the locations of known geothermal sites. Models
are trained for transductive inference.
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(a) (b)

Figure 3.7: Single-feature maps for (a) heat flow (hf_raw) and (b) seismic density (eqptd_raw).

3.5 Single-Feature Maps

The five features (heat flow, fault distance, magma distance, seismic density, and stress) are

each normal score transformed and displayed according to their coordinates in Figures 3.7

and 3.8. Single-feature maps such as these have the potential to show where each feature is

“bleeding through,” or showing more influence in the biases in each model.
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(a) (b)

(c)

Figure 3.8: Single-feature maps for (a) magma distance (mag_raw), (b) fault distance (flt_raw), and (c)
stress (str_raw).
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3.6 Model Predictions

The ridge and CDF plots in Figures 3.9, 3.11, and 3.12 were created in a transductive manner

by training one model on the entire dataset using the averaged optimal hyperparameters

obtained through grid search optimization for each algorithm and evaluation metric. Pre-

dictions were then made on the entire dataset and normal-score transformed, following the

same method as for the favorability maps. Despite being normal score transformed, the

unlabeled distribution appears bimodal, particularly in Figure 3.12, because an overwhelming

number of predictions produced by the model are extremely close to zero. For Figure 3.10,

stratified out-of-sample predictions were used in an inductive manner to cover the entire

dataset before normal-score transforming them. The difference between these two training

and prediction strategies is that in the first (Figures 3.9, 3.11, and 3.12), cross-validation

is used only for hyperparameter tuning. The final classifier for each model is trained on all

data and then used to make predictions on all data, which could lead to an overfit model

that performs well on in-sample predictions but does not translate as well to unseen data. In

the second strategy (Figure 3.10), cross-validation is also used to train on subsets of the data

in a stratified manner. Five separate final models are trained, each on a new random subset

of data, and test predictions are made on the remaining unseen data by each of these five

models. Obtaining predictions out-of-sample should prevent overfitting and better indicate

the relative performance of each model when generalized to unseen data.
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Figure 3.9: Ridge (top) and CDF (bottom) plots for logistic regression (LR) and XGBoost (XGB) prediction
results, tuned using either their F1 scores (F1), Recall, ROC-AUC, or DKL (KL). Models are trained on
all data and used to predict on all data. This is an indication of each model’s performance when used for
transductive inference.
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Figure 3.10: Ridge (top) and CDF (bottom) plots for logistic regression (LR) and XGBoost (XGB)
prediction results, tuned using either their F1 scores (F1), Recall, ROC-AUC, or DKL (KL). Stratified
cross-validation is used to obtain out-of-sample predictions across the entire dataset. This shows the relative
model performance when used for inductive inference.
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Figure 3.11: Ridge (top) and CDF (bottom) plots showing comparison of non-PU methods with SAR-EM
methods. Similar to Figure 3.9, models are trained on all data and used to predict on all data in a transductive
manner.

71



Figure 3.12: Ridge (top) and CDF (bottom) plots for DEDPUL with XGBoost (XGB) as NTC, tuned
using either the F1 scores (F1), Recall, ROC-AUC, or DKL (KL). Models are trained on all data and used to
predict on all data in a transductive manner.
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4 Discussion

The hyperparameters found for XGBoost both through F1 score and DKL tuning agree with

those found in [6]. For LR, however, only the class weight found through F1 score tuning

was similar in range to that reported in [6]. The optimal inverse regularization strength is a

little less than three orders of magnitude larger (for LR tuned by F1 score: 2023.1 vs. 3 as

reported in [6]). In addition, the optimal class weight for LR tuned by DKL is one order of

magnitude lower than the natural class balance of 1:700 estimated by [5] and [6]. It is closer

to the optimal class weights found by [6] for the single and ensemble classifier strategies when

using the 95th percentile ratio of 1:955 for the natural class balance as estimated from [9].

The single-feature maps in Figures 3.7 and 3.8 allow us to view some of the influence

each feature has on the final model predictions. We can see the areas of high heat flow in

Figure 3.7 (a) contribute directly to the regions of high geothermal favorability, especially in

Northern Nevada and centered around the Idaho-Nevada-Utah border. As another example,

the additional confluence of high seismic density and proximity to bodies of magma as

seen in Figure 3.7 (b) and (c), as well as proximity to faults and areas of low stress as

depicted in Figure 3.8 (a) and (b), may result in the pocket of high favorability around the

Idaho-Montana-Wyoming border. Interestingly, SAR-EM and LR seem to reproduce the

region of low fault proximity in the northeast corner of the map in Figure 3.8 (a) in their

favorability maps, Figures 3.5 and 3.3 respectively.
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4.1 The Use of the DKL for Model Evaluation

Figures 3.9, 3.10, and 3.11 show ridge and CDF plots to compare several different training

and prediction pipelines. Figure 3.9 compares strategies when trained on all data using

optimal hyperparameters and then used to make predictions on all data, in a transductive

inference scheme. Finally, the predictions were normal-score transformed and separated into

the posterior positive and prior unlabeled distributions. This is the same method used to

generate the ridge and CDF plots provided in [6]. Mordensky et al. [5] showed that, even

though the favorability maps produced by the XGBoost model more closely aligned with those

created by expert opinion, the LR models consistently scored the best according to the F1

score. Because predicting on the training set can be optimistic and not reflect true classifier

performance on new data, Figure 3.10 compares the same strategies when cross-validation is

used to obtain out-of-sample predictions across the entire dataset, in an inductive inference

scheme. Indeed, when out-of-sample predictions are taken, the strategies perform more

similarly to each other and it is harder to discern a clear winner. Interestingly, in this

pipeline XGB+F1 and XGB+ROC-AUC perform a bit better than the other six strategies.

Also of note is that XGB+KL performs the worst when out-of-sample predictions are taken.

This differs greatly from the outcome of the “in-sample” predictions in Figure 3.9, which

would suggest that the best performance is achieved by the XGB+KL strategy. Figure 3.11

compares a subset of the strategies in the previous two figures against the performance of the

SAR-EM strategy. From this figure it is clear that SAR-EM achieves a similar performance

to the control strategies taken from [5] and [6].

One could conclude from Figure 3.9 that XGBoost is capable of pushing the known

positive distribution further away from the unlabeled distribution when optimizing the DKL.

However, one cannot determine just by examining the DKL if this is due to the algorithm

finding more true positive examples or if it is due to the DKL’s tendency to make a larger
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area positive, past what is likely for the underlying distribution. This uncertainty makes the

DKL an imperfect method of model evaluation but one that still may be helpful in identifying

possible positive samples within the unlabeled distribution.

The favorability maps in Figures 3.3 and 3.4 show that XGBoost tuned to the DKL has

a sharper contrast between regions of high and low favorability. These results indicate an

algorithm which is much more certain of its negative predictions. All favorability maps

generated are in general agreement among regions of high favorability and most of the

difference is observed in regions of lower favorability. As postulated in [6], this may be

due to the inherent nature of the positive unlabeled data from the 2008 assessment [9] to

train classifiers on positive examples which are similar to each other; positive examples all

share similar qualities which make them more likely to be selected for labeling, whereas

true negative examples may be considered negative for a number of different reasons. These

results are in general agreement with the findings in [5] and [6], which indicate an inherent

limitation of the data used in this study, and the need for a more comprehensive model of

geological conditions in addition to a more standardized data collection procedure.

4.2 PU Learning Methods for Geothermal Favorability Prediction

As seen in Table 3.1, the SAR-EMmethod achieves a MAE of 1.01e-4 from the estimated expert

opinion-based positive class prior of 1:700 or about 1.43e-3 positives per every one negative

example. However, due to the findings in [6] and the optimal class weight hyperparameters

found for LR and XGBoost, it is likely that the natural class balance contains more positive

samples than this ratio indicates. The favorability maps generated from SAR-EM also very

closely resemble those generated from the LR models. Interestingly, as seen in Table 3.4,

the ROC-AUC scores for SAR-EM are much lower than the other methods (both the F1-

and DKL-tuned models score just above random guessing, with the default model scoring

marginally better). SAR-EM achieves the best Recall against the other non-PU strategies.

75



An interesting aspect of the ridge plots produced by DEDPUL, seen in Figure 3.12, is that

the positive prediction probability density functions (PDFs) resemble bimodal Gaussians.

The right peaks of the PDFs have lower maxima than the left peaks, but also have means

that are greater than the mean of the positive prediction PDF resulting from XGB+KL. This

may indicate the ability of DEDPUL to separate the positive predictions into two distinct

regions based on some latent feature of the data.
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5 Conclusion & Future Work

This thesis has presented several ways of incorporating techniques from PU learning into the

problem of predicting geothermal favorability from a severely class-imbalanced PU dataset. In

addition, it has shown the utility of using the DKL between estimated positive and unlabeled

distributions as a method of model evaluation when training machine learning models from

PU data. The key contributions of this thesis are presented below, along with possible

directions for future study.

5.1 The Use of the DKL for Model Evaluation

The DKL has been used previously for anomaly detection [31, 32], and for class prior esti-

mation [33]. This thesis has presented maximizing the DKL between prior unlabeled and

predicted positive posterior distributions for model evaluation in PU learning problems as a

novel application and provided insight into the possibilities of using other methods of model

evaluation. The DKL is an unbounded measure which does not depend on knowing the

ground truth for training data. When used for hyperparameter optimization, it results in a

model which more harshly penalizes likely negative samples. However, because the DKL only

considers the statistical properties of distributions, it does not directly allow for insight into

whether a model correctly identifies an unlabeled sample as positive. Still, when used with

other techniques it can be a valuable tool for identifying possible positive examples within

the unlabeled distribution.
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5.2 PU Learning Methods for Geothermal Favorability Prediction

This thesis has examined the classification results from three PU learning techniques: TIcE [47],

SAR-EM [1], and DEDPUL [59], and the class prior estimation results from four PU learning

algorithms: KM2 [2], TIcE [47], SAR-EM, and DEDPUL. For comparison with these state-of-

the-art PU learning algorithms, the results from [5] and [6], with LR and XGBoost classifiers

trained naïvely, were reproduced. Results from these two studies were reinforced by those

obtained in this thesis, which show that the predictions from the nonlinear XGBoost model

more closely resemble the results from the previous 2008 assessment [9]. The favorability

maps generated by DEDPUL are similar in appearance to those produced using the DKL for

hyperparameter optimization, indicating it also has an affinity for giving likely negatives a

lower favorability. The bimodality of the positive prediction PDFs in the DEDPUL ridge

plots show that it may be able to identify distinct regions within the positive samples based

on some latent features in the data. This aspect of the predictions made by DEDPUL would

benefit from future study.

Because the body of work relating to positive unlabeled learning is rich yet fairly new, it is

possible that other techniques may be better suited to the problem of geothermal favorability

assessment which have not yet been considered. Clustering may be used to identify subclasses

within the positive examples, possibly based on differing geological processes which may

not be explicitly distinct when performing binary classification, to further enhance the

performance of classification algorithms. It is possible that further utility can be gained

from multiclass classification to separate currently accessible resources (those we are able

to extract with current technology, e.g. steam and hot-water hydrothermal processes) from

hopefully accessible resources (those we may have the ability to extract in the future through

the continued development of new technology, e.g. magma).

Another avenue for future work is the incorporation of newer, more detailed datasets
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which may provide deeper insight and allow for comparison of methods on similar but more

consistent data. Short of using an entirely new dataset, the dataset from the 2008 USGS

assessment [9] might also be improved through the use of rank pruning methods, as indicated

by preliminary application of confident learning techniques to identify near-duplicates, outliers,

and potentially mislabeled data [40]. Mordensky et al. [6] mention that a quantile-to-quantile

transformation might be beneficial to remove outliers and further normalize the data. It

would also be interesting to explore feature importance as demonstrated in [6], and how it

changes relative to each PU method. Finally, classifiers may benefit from feature engineering

(e.g. combining depth of magmatic activity, permeability, vertical connectivity, etc.) to better

reflect the geophysical conditions required for favorable geothermal energy production.
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