
EE 510: Machine Learning Theory & Algorithms Spring 2022

Mini Project 2

Due: May 13, 2022, 11:59PM PT
Student Name: Mart́ın Rodriguez Instructor Name: John Lipor

1 Problem description

Statistical analysis plays a large part in insurance claim policies. Insurance companies often want to know
the risk associated with an individual when offering them insurance packages or evaluating their current
policy. There is much room for improvement in how these companies use machine learning to build models
from customer data. The goal for this project is to take a set of insurance customer data provided as part
of a Kaggle competion, and use the data to train a model to determine whether an individual policy holder
will likely file a claim within the next year [1]. The XGBoost (Extreme Gradient Boosting) algorithm was
used to train the model [2].

2 Exploratory data analysis (EDA)

This dataset consists of a training set with 595212 entries and test set with 892816 entries. The training
set has 59 columns, one of which is the target feature, a binary value: 1 if the individual filed an insurance
claim and 0 if they did not. The test set has 58 columns and lacks the target feature. Of the 595212 samples
in the training set, 573518 samples are classified as 0 and 21694 are classified as 1. As a percentage, there
are 96.36% negatives compared to 3.64% positives, indicating that this dataset is heavily imbalanced. Null
values in this dataset are indicated by -1.
The features are grouped into four categories: ’ind’, ’reg’, ’car’, and ’calc’, and the results of a
preliminary analysis are shown in table 1.

Category Data type Count Total
binary 11

’ind’ categorical 3 18
continuous/ordinal 4

binary 0
’reg’ categorical 0 3

continuous/ordinal 3
binary 0

’car’ categorical 11 16
continuous/ordinal 5

binary 6
’calc’ categorical 0 20

continuous/ordinal 14

Table 1: Data grouping

1



Mini Project 2 2

id

ta
rg

et

p
s

in
d

0
1

p
s

in
d

02
ca

t

p
s

in
d

0
3

p
s

in
d

04
ca

t

p
s

in
d

05
ca

t

p
s

in
d

06
b

in

p
s

in
d

07
b

in

p
s

in
d

08
b

in

p
s

in
d

09
b

in

p
s

in
d

10
b

in

p
s

in
d

11
b

in

p
s

in
d

12
b

in

p
s

in
d

13
b

in

p
s

in
d

1
4

p
s

in
d

1
5

p
s

in
d

16
b

in

p
s

in
d

17
b

in

p
s

in
d

18
b

in

p
s

re
g

0
1

p
s

re
g

0
2

p
s

re
g

0
3

p
s

ca
r

0
1

ca
t

p
s

ca
r

0
2

ca
t

p
s

ca
r

0
3

ca
t

p
s

ca
r

0
4

ca
t

p
s

ca
r

0
5

ca
t

p
s

ca
r

0
6

ca
t

p
s

ca
r

0
7

ca
t

p
s

ca
r

0
8

ca
t

p
s

ca
r

0
9

ca
t

p
s

ca
r

1
0

ca
t

p
s

ca
r

1
1

ca
t

p
s

ca
r

1
1

p
s

ca
r

1
2

p
s

ca
r

1
3

p
s

ca
r

1
4

p
s

ca
r

1
5

p
s

ca
lc

01

p
s

ca
lc

02

p
s

ca
lc

03

p
s

ca
lc

04

p
s

ca
lc

05

p
s

ca
lc

06

p
s

ca
lc

07

p
s

ca
lc

08

p
s

ca
lc

09

p
s

ca
lc

10

p
s

ca
lc

11

p
s

ca
lc

12

p
s

ca
lc

13

p
s

ca
lc

14

p
s

ca
lc

1
5

b
in

p
s

ca
lc

1
6

b
in

p
s

ca
lc

1
7

b
in

p
s

ca
lc

1
8

b
in

p
s

ca
lc

1
9

b
in

p
s

ca
lc

2
0

b
in

id

ps ind 01

ps ind 03

ps ind 05 cat

ps ind 07 bin

ps ind 09 bin

ps ind 11 bin

ps ind 13 bin

ps ind 15

ps ind 17 bin

ps reg 01

ps reg 03

ps car 02 cat

ps car 04 cat

ps car 06 cat

ps car 08 cat

ps car 10 cat

ps car 11

ps car 13

ps car 15

ps calc 02

ps calc 04

ps calc 06

ps calc 08

ps calc 10

ps calc 12

ps calc 14

ps calc 16 bin

ps calc 18 bin

ps calc 20 bin

Feature Correlation Matrix

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Feature correlation matrix

The feature correlation matrix shown in Figure 1 indicates that features in the ’calc’ category have
no correlation with the target feature, so these were removed from the feature space. Figure 2 shows the
updated feature correlation matrix.

id

ta
rg

et

p
s

in
d

01

p
s

in
d

02
ca

t

p
s

in
d

03

p
s

in
d

04
ca

t

p
s

in
d

05
ca

t

p
s

in
d

06
b

in

p
s

in
d

07
b

in

p
s

in
d

08
b

in

p
s

in
d

09
b

in

p
s

in
d

10
b

in

p
s

in
d

11
b

in

p
s

in
d

12
b

in

p
s

in
d

13
b

in

p
s

in
d

14

p
s

in
d

15

p
s

in
d

16
b

in

p
s

in
d

17
b

in

p
s

in
d

18
b

in

p
s

re
g

01

p
s

re
g

02

p
s

re
g

03

p
s

ca
r

01
ca

t

p
s

ca
r

02
ca

t

p
s

ca
r

03
ca

t

p
s

ca
r

04
ca

t

p
s

ca
r

05
ca

t

p
s

ca
r

06
ca

t

p
s

ca
r

07
ca

t

p
s

ca
r

08
ca

t

p
s

ca
r

09
ca

t

p
s

ca
r

10
ca

t

p
s

ca
r

11
ca

t

p
s

ca
r

11

p
s

ca
r

12

p
s

ca
r

13

p
s

ca
r

14

p
s

ca
r

15

id

target

ps ind 01

ps ind 02 cat

ps ind 03

ps ind 04 cat

ps ind 05 cat

ps ind 06 bin

ps ind 07 bin

ps ind 08 bin

ps ind 09 bin

ps ind 10 bin

ps ind 11 bin

ps ind 12 bin

ps ind 13 bin

ps ind 14

ps ind 15

ps ind 16 bin

ps ind 17 bin

ps ind 18 bin

ps reg 01

ps reg 02

ps reg 03

ps car 01 cat

ps car 02 cat

ps car 03 cat

ps car 04 cat

ps car 05 cat

ps car 06 cat

ps car 07 cat

ps car 08 cat

ps car 09 cat

ps car 10 cat

ps car 11 cat

ps car 11

ps car 12

ps car 13

ps car 14

ps car 15

Feature Correlation Matrix without calc

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Feature correlation matrix without ’calc’ features



Mini Project 2 3

0 10 20 30 40 50 60 70

Percentage missing values

ps ind 02 cat

ps ind 04 cat

ps ind 05 cat

ps reg 03

ps car 01 cat

ps car 03 cat

ps car 05 cat

ps car 07 cat

ps car 09 cat

ps car 14

Features with missing values

Figure 3: Features containing missing values

Since ’ps car 03 cat’ and ’ps car 05 cat’ both have a large percentage of missing values, they should
be dropped as well.

3 Challenges

This dataset proved to be quite challenging to interpret. Because of the labeling scheme for the features, it
was not possible to form an intuition about how the features might depend on one another. It turned out
that several of the features did not contribute at all to the model, so these had to be disposed of. Another
challenge was the fact that the data was heavily imbalanced, creating more of an ”anomaly detection”
problem. To deal with an imbalanced dataset, the training set can either be subsampled, oversampled, or a
combination of the two such that there is an even split between negative and positive examples. Subsampling
reduces the number in the of majority class and thus incurs information loss, whereas oversampling creates
redundant or similar samples to those in the minority class [3].

4 Approach

Here is the general approach followed for this dataset:

1. Exploratory data analysis

(a) Look at correlation, collinearity, class imbalance, etc.

2. Preprocessing

(a) Remove uncorrelated features

(b) Remove features with the most missing values

(c) Fill missing values

(d) One-hot-encode categorical features

3. Training

(a) Shuffle and scale the data



Mini Project 2 4

(b) Create training and validation sets

(c) Subsample the data for a 50/50 class split

(d) Train the model

(e) Validate the model

It was observed that the features in the ’calc’ category had no correlation with the target, so these
were removed, along with ’ps car 03 cat’ and ’ps car 05 cat’, which had the most missing values. The
categorical and binary missing values were filled with their column mode. Other missing values were filled
with their column median. Highly collinear features do not add much value to a potential model, so methods
of removing these were considered [4]. However, after removing collinear features with a Pearson Coefficient
higher than 0.98, no performance increase was observed, so these were kept in the final model [5]. The
categorical features were one-hot-encoded for easier interfacing with scikit-learn’s XGBoost API. Due to
time constraints, a validation set with a test size of 20% was used to validate the model because this was
the easiest to implement. Also for lack of time, the simplest subsampling approach was chosen, which just
takes a random subset of the majority class such that the ratio between the classes is equal for training.
The model was trained on this subsampled data using XGBoost with a binary logistic objective function,
100 boosting rounds, a maximum tree depth of 3, and a learning rate of 0.1. The default parameters for
scikit-learn’s implementation actually gave a good tradeoff between performance and computation time.
After training, the model was then validated using the non-resampled validation set.

5 Evaluation and summary

Because the dataset is heavily imbalanced toward the negative class, accuracy is not a good metric to use to
determine the validity of our model [6]. If a model simply guessed ’0’ for every data point, it would perform
quite well by this metric due to the overwhelming ratio of negatives to positives. For an anomaly detection
problem such as this, other metrics have to be considered, such as the Precision (percentage of correctly
identified positives out of all predicted positives), Recall score (percentage of actual positives found by our
model), and F1 score, which combines the Precision and Recall score by taking their harmonic mean [7]. We
can also look at the Receiver-Operator Characteristic (ROC) curve, which shows the balance between the
True Positive Rate and the False Positive Rate for our model.

The Kaggle competition uses the Normalized Gini Coefficient to evaluate submissions. The Gini Coeffi-
cient can be obtained from the area under the ROC curve [8]:

Gini = 2 × AUC − 1.

The final ”late submission” to the Kaggle competition achieved a score of 0.2676. All metrics are sum-
marized in Table 2.



Mini Project 2 5

0 1

Predicted label

0

1

T
ru

e
la

b
el

71987 42774

1836 2446

10000

20000

30000

40000

50000

60000

70000

Figure 4: Confusion matrix for validation set

Metric Score
Accuracy 0.6206
Precision 0.05516

Recall 0.5731
F1 0.1006

Gini 0.2676

Table 2: Summary of metrics on validation set



Mini Project 2 6

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

o
si

ti
ve

R
at

e

AUC = 0.6407

AUC and ROC Curve

Figure 5: AUC and ROC curve for validation set

The results in Table 2 show how misleading the accuracy is for this dataset. Because the precision is
so low (many negatives were incorrectly identified as positive), the F1 score suffers, but is a more helpful
metric in this regard. For the sake of the competition, the Gini Coefficient was used for model validation
and hyperparameter tuning. Although limited by time for this project, further study into various methods
of subsampling and oversampling as well as cross-validation could increase model performance.



Mini Project 2 7

Figure 6: Feature importance for validation set



Mini Project 2 8

(a) Negative example (b) Positive example

Figure 7: Prediction results for two examples



Mini Project 2 9

Figure 8: Beeswarm SHAP plot over all predictions

Figure 9: SHAP plot for a negative prediction



Mini Project 2 10

Figure 10: SHAP plot for a positive prediction

Figures 6, 7, 8, 9, and 10 are all different methods for looking into why the model made certain predictions
on the validation set. Figure 6 indicates that the most importance features using permutation importance
are ps ind 15, ps car 13, ps ind 03, ps ind 05 cat 0.0 (one of the one-hot-encoded categorical variables),
and ps ind 01 [9]. Figure 7 shows the feature importance for two difference predictions; (a) shows a negative
prediction, and (b) shows a positive prediction. We can see that the greatest contributor to the negative
(correct) prediction was ps ind 15 and the greatest contributor to the positive (incorrect) prediction was
ps reg 02. This indicates that ps reg 02 may be a problematic feature for classification. Figure 8 shows an
overall ”beeswarm” SHAP (SHapley Additive exPlanations) plot [10]. This plot indicates, for example, that
a higher value for ps car 13 increases the predicted output and that a lower value for ps ind 15 decreases
the predicted output. Figures 9 and 10 give another look at the same negative and positive predictions as in
Figure 7. These plots show the force of each feature toward pushing the prediction away from the average
model output; for this dataset, E[f(X)] = 0. Figure 9 shows that ps car 13 works to push the predicted
value in the positive direction, but it isn’t enough to overcome all of the other features pushing it in the
negative direction. Figure 10 shows the value of that same feature working to push the predicted value in
the negative direction, but the other features keep it positive, resulting in the incorrect prediction.



Mini Project 2 11

Figure 11: Training vs test error versus 1000 boosting rounds

Figure 12: Training vs test error versus 100 boosting rounds

I ended up choosing 100 boosting rounds because of the increase in test error seen after 100-200 boosting
rounds.

6 What I learned

I reviewed [11] and [12] to find out how to approach a dataset when its labeling does not permit easy
intuition. Although I didn’t end up using most of its tools in the final model, [4] was helpful in analyzing
feature importance and discovering which features could potentially be dropped. [6] and [3] were valuable



Mini Project 2 12

in learning about anomaly detection and handling imbalanced datasets. When evaluating the effectiveness
of my approach on this project using the techniques outlined in [9], [13] and [10] allowed me to see the effect
each feature had on specific predictions. I did not use these model analysis techniques on the first project,
but I will definitely come back to these on future projects. The area which I could probably stand to improve
upon the most is in hyperparameter tuning. For this problem I found that deviating from XGBoost’s default
parameters did not lead to an improvement in performance, although that may be due to my approach as
well.

References

[1] (2018) Porto seguro’s safe driver prediction. [Online]. Available: https://www.kaggle.com/c/
porto-seguro-safe-driver-prediction/data?select=train.csv

[2] (2021) Xgboost documentation. [Online]. Available: https://xgboost.readthedocs.io/en/latest/index.
html

[3] (2018) Undersampling and oversampling imbalanced data. [Online]. Available: https://www.kaggle.
com/code/residentmario/undersampling-and-oversampling-imbalanced-data/notebook

[4] (2018) Feature selector: Simple feature selection in python. [Online]. Available: https:
//github.com/WillKoehrsen/feature-selector/blob/master/Feature%20Selector%20Usage.ipynb

[5] (2022) Spss tutorials: Pearson correlation. [Online]. Available: https://libguides.library.kent.edu/
SPSS/PearsonCorr

[6] (2019) Credit fraud —— dealing with imbalanced datasets. [Online]. Available: https:
//www.kaggle.com/code/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets/notebook

[7] (2022) Scikit learn metrics - f1 score. [Online]. Available: https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.f1 score.html

[8] E. Schechtman and G. Schechtman, “The relationship between gini terminology and the roc curve,”
METRON, no. 77, p. 171–178, 2019.

[9] (2019) Ml explainability: Deep dive into ml model! [Online]. Available: https://www.kaggle.com/
niyamatalmass/ml-explainability-deep-dive-into-the-ml-model

[10] (2022) Shap (shapley additive explanations). [Online]. Available: https://github.com/slundberg/shap

[11] (2020) Exploratory data analysis (eda) using python. [Online]. Available: https://www.youtube.com/
watch?v=-o3AxdVcUtQ

[12] (2020) Simple predicting insurance claim. [Online]. Available: https://www.kaggle.com/code/nkemjika/
simple-predicting-insurance-claim/notebook

[13] (2017) Eli5 documentation. [Online]. Available: https://eli5.readthedocs.io/en/latest/index.html

https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/data?select=train.csv
https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/data?select=train.csv
https://xgboost.readthedocs.io/en/latest/index.html
https://xgboost.readthedocs.io/en/latest/index.html
https://www.kaggle.com/code/residentmario/undersampling-and-oversampling-imbalanced-data/notebook
https://www.kaggle.com/code/residentmario/undersampling-and-oversampling-imbalanced-data/notebook
https://github.com/WillKoehrsen/feature-selector/blob/master/Feature%20Selector%20Usage.ipynb
https://github.com/WillKoehrsen/feature-selector/blob/master/Feature%20Selector%20Usage.ipynb
https://libguides.library.kent.edu/SPSS/PearsonCorr
https://libguides.library.kent.edu/SPSS/PearsonCorr
https://www.kaggle.com/code/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets/notebook
https://www.kaggle.com/code/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets/notebook
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://www.kaggle.com/niyamatalmass/ml-explainability-deep-dive-into-the-ml-model
https://www.kaggle.com/niyamatalmass/ml-explainability-deep-dive-into-the-ml-model
https://github.com/slundberg/shap
https://www.youtube.com/watch?v=-o3AxdVcUtQ
https://www.youtube.com/watch?v=-o3AxdVcUtQ
https://www.kaggle.com/code/nkemjika/simple-predicting-insurance-claim/notebook
https://www.kaggle.com/code/nkemjika/simple-predicting-insurance-claim/notebook
https://eli5.readthedocs.io/en/latest/index.html

	Problem description
	Exploratory data analysis (EDA)
	Challenges
	Approach
	Evaluation and summary
	What I learned

